Abstract:
Generally L-shaped, square, rectangular, triangular, hexagonal, parallelogram and other-shaped paving stones with inter-fitting vertical spacers forming serpentine side contact surfaces that provide enhanced stone-to-stone interlocking in both water-permeable and water-impermeable paving installations.
Abstract:
A paving system is disclosed that includes a first paving stone having a virtual perimeter outline and a plurality of first physical sides, the virtual perimeter outline having a plurality of segments, where each segment of the plurality of segments corresponds to two or more of the first physical sides, and wherein any vertex between two adjacent segments is separated from any vertex between two adjacent first physical sides by a predetermined distance. A second paving stone having the virtual perimeter outline and a plurality of second physical sides, where each segment of the plurality of segments corresponds to two or more of the second physical sides, and wherein any vertex between two adjacent segments is separated from any vertex between two adjacent second physical sides by a predetermined distance. The plurality of first physical sides is different from the plurality of second physical sides.
Abstract:
A landscaping block having a block body with at least a first side surface, a second side surface, a third side surface and a fourth side surface, and opposed and substantially parallel top and bottom surfaces. The patio block having at least one spacer projection extending outwardly from each of the at least first, second, third and fourth side surfaces. The patio block having at least one spacer locator positioned along each one of the first, second, third and fourth side surfaces. The at least one spacer locator positioned along each side surface has a retaining surface shaped to receive a spacer projection, at least a portion of the retaining surface extending outwardly from the side surface.
Abstract:
A heatable pathway system for traffic comprises a first module having a first electrically powerable heater member and a second module having a second electrically powerable heater member. The first module and the second module are each installable in place to form a heatable pathway system for traffic. An electrical power controller circuit has a first power output connected in power supplying relation to the first electrically powered heater member and a second power output connected in power supplying relation to the second electrically powerable heater member. The electrical power controller circuit is operable to provide electrical power from the power outputs in a heating cycle that comprises a first heating sub-cycle and a second heating sub-cycle such that, during a heating cycle, a first one of the electrically powerable heater members is on and a second one of the electrically powerable heater members is off during the first heating sub-cycle, and the second electrically powerable heater member is on and the first electrically powerable heater members is off during the second heating sub-cycle.
Abstract:
A method for installing a paver system includes positioning a first grid substrate adjacent to a second grid substrate. The first grid substrate and the second grid substrate are flexibly bridged with a first paver piece. A first portion of the first paver piece is movably coupled with the first grid substrate at a first joint, and a second portion of the first paver piece is movably coupled with the second grid substrate at a second joint, the first and second grid substrates and the first paver piece forming an articulated paver linkage. A second paver piece is coupled with the second grid substrate. A third paver piece is coupled with the first grid substrate. The articulated paver linkage is fit within the specified area by movement of at least one of the first, second and third paver pieces and the first and second grid substrates. The movement is transmitted along the articulated paver linkage to maintain a specified alignment and spacing of the first, second and third paver pieces.
Abstract:
Modular landscape devices, systems, and associated methods are provided. In one aspect, for example, a modular landscape device can include a plurality of molded structures formed from an aggregate material, where each molded structure has a display surface and a buried surface. The device also includes at least one tether connecting the plurality of molded structures together to form the modular landscape device. In one aspect, each of the plurality of molded structures are not in contact with another of the plurality of molded structures.
Abstract:
An artificial flagstone for use in combination with other similar flagstones for covering a surface with a natural random look, the flagstone having a generally hexagonal body comprising a first, second, third, fourth, fifth and sixth consecutive vertices; a first pair of first and second sides extending radially from the first vertex; a second pair of third and fourth sides extending radially from the third vertex; a third pair of fifth and sixth sides extending radially from the fifth vertex; wherein the sides of at least one of the first, second and third pair of sides have at least one split deviation along their length and are respectively rotational images of each other, and the artificial flagstone has no rotational symmetry when rotated about a central axis.
Abstract:
A permeable surface covering unit comprises a top surface and at least two pairs of irregularly shaped mating sides, one or more passageways extending downwardly from the top surface, and at least one under channel connected to the passageways for retaining liquid, such as storm water. The sides of the unit preferably define an irregular rotational tessellation element. The passageways may comprise gaps or side cavities between units and/or core cavities or other passageways within the unit. Optional undercuts may be provided in the core cavities. Pervious material plugs are cast into the cavities extending into the channel or undercut. Thereby the plug is locked into the cavity like a rivet and resists being dislodged by mechanical or hydraulic forces. A permeable surface embodiment comprises a combination of pervious and impervious units, wherein the ratio of permeable to impermeable units and resulting surface absorption rate may be adjusted.
Abstract:
A culvert structure interconnectable with interconnectable paver blocks. The culvert structure comprises an elongated rigid casing having a bottom wall, opposed parallel vertical side walls, and an open top end. One of the vertical side walls has at least one projection formation for interconnection with a slot of adjacent ones of the paver blocks in a paved surface formed by the paver blocks. The other of the vertical side walls has a slot formation for interconnection with a blocks engaging projection of adjacent ones of the paver blocks in the paved surface. The bottom wall has passage means for the evacuation of water therethrough and a support structure connected to the rigid casing for supporting a grate over the open top end.
Abstract:
An artificial flagstone for use in combination with other similar flagstones for covering a surface with a natural random look, the flagstone having a generally hexagonal body comprising a first, second, third, fourth, fifth and sixth consecutive vertices; a first pair of first and second sides extending radially from the first vertex; a second pair of third and fourth sides extending radially from the third vertex; a third pair of fifth and sixth sides extending radially from the fifth vertex; wherein the sides of at least one of the first, second and third pair of sides have at least one split deviation along their length and are respectively rotational images of each other, and the artificial flagstone has no rotational symmetry when rotated about a central axis.