Abstract:
An organic light emitting device includes a substrate; a first electrode; a second electrode; and an organic layer including an emission layer between the first electrode and the second electrode. The organic layer includes a first intermediate layer including a first host and a first dopant, a second intermediate layer including the first dopant, and a third intermediate layer including a second host and the first dopant interposed between the first electrode and the emission layer. The organic light emitting device has a long lifetime.
Abstract:
An organic light emitting display includes a first substrate including a plurality of anode electrodes on an insulating layer and a plurality of pixel definition layers around the plurality of anode electrodes. An impact absorbing layer is spaced from the plurality of pixel definition layers, and a spacer is on an upper surface of the impact absorbing layer. A second substrate faces the first substrate and is spaced from the first substrate by the spacer.
Abstract:
A flat panel display includes a pixel electrode, an organic emission layer, an opposite electrode, a phase shift layer and a reflecting layer disposed on a substrate. The phase shift layer and the reflecting layer are stacked on the opposite electrode to destructively interfere with reflected external light to realize black and achieve excellent luminous efficiency.
Abstract:
An organic light emitting diode (OLED) display. The OLED display includes: a lower electrode formed on a layer on an insulating substrate having a thin film transistor. The lower electrode is electrically connected to the thin film transistor. An auxiliary electrode is formed on the same layer as the lower electrode, and a pixel defining layer is formed on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode. An organic layer is formed on the portion of the lower electrode exposed by the opening, and an upper electrode is formed on an entire surface of the insulating substrate and electrically connected to the auxiliary electrode. An edge of the auxiliary electrode may have a taper angle of at least 90°.
Abstract:
Organic light emitting devices (OLEDs) are provided. An exemplary OLED includes a substrate, a first electrode, a second electrode, and an organic layer between the first and second electrodes having a hole injection layer and an emissive layer. The emissive layer includes red, green and blue emissive layers. The organic layer further includes an auxiliary layer selected from a first auxiliary layer between the hole injection layer and the red emissive layer for adjusting the resonance cycle of red light, a second auxiliary layer between the hole injection layer and the green emissive layer for adjusting the resonance cycle of green light, and combinations thereof. The material of the auxiliary layer is different from the material of the hole injection layer. The organic light emitting device has low turn-on voltage, high current density, high luminance, high current efficiency, high power, long life-time, and excellent color purity.
Abstract:
The application discloses a method for making bone at a bone defect site which includes generating a member of a transforming growth factor superfamily of proteins; generating a population of cultured connective tissue cells that may contain a vector encoding a gene, or a population of cultured connective tissue cells that do not contain any vector encoding a gene; and transferring the protein and the connective tissue cells of to the bone defect site, and allowing the bone defect site to make the bone.
Abstract:
An organic light emitting diode (OLED) display. The OLED display includes: a lower electrode formed on a layer on an insulating substrate having a thin film transistor. The lower electrode is electrically connected to the thin film transistor. An auxiliary electrode is formed on the same layer as the lower electrode, and a pixel defining layer is formed on edges of the lower electrode, thereby defining an opening which exposes a portion of the lower electrode. An organic layer is formed on the portion of the lower electrode exposed by the opening, and an upper electrode is formed on an entire surface of the insulating substrate and electrically connected to the auxiliary electrode. An edge of the auxiliary electrode may have a taper angle of at least 90°.
Abstract:
A method for manufacturing an organic light emitting display. Pixel portions are formed on a mother substrate. A test wiring for testing pixel portions is formed at a peripheral portion of the mother substrate. A sealing material is formed at one surface of a sealing substrate to enclose the pixel portions, the sealing substrate being sealed to be spaced apart from the mother substrate. A spacer is formed at a side region of the one surface of the sealing substrate on which the sealing material is formed. The mother substrate and the sealing substrate are adhered to each other by the sealing material to seal the pixel portions within an enclosure formed by the mother substrate, sealing surface, and sealing material. A part of the sealing substrate is scribed and removed to expose the test wiring, the part of sealing substrate being arranged over a portion of the test wiring.
Abstract:
An indexable type cutting tool comprises a drill having a shank and a drill body which extends from the shank, the drill body being defined with body flutes, and being formed with an insert seat which has seat side surfaces and a seat bottom surface and body flank surfaces and body thinning surfaces; a drill insert fitted into the insert seat of the drill body, having cutting edges and an insert bottom surface which is brought into close contact with the seat bottom surface, formed with insert flutes and insert side surfaces which are brought into close contact with the seat side surfaces, and defined with a through-hole which passes through the insert side surfaces; and a fastening screw for fastening the drill insert fitted into the insert seat to the drill.
Abstract:
A process for preparing As4O6 comprises successively heating and cooling a mixture of natural Sinsuk and 40% alcohol in a ratio of about 1: about 1 for about 1 to about 2 hour(s) resulting in a product, successively washing the product with distilled water thereby forming washed precipitates, maintaining the washed precipitates at about −40° C. for 24 hours, defrosting, filtering, and drying the precipitates, and successively heating and cooling the precipitates to obtain the final As4O6 product.
Abstract translation:制备As u> O sub> 6的方法包括依次加热和冷却约1:约1比例的天然辛辛克和40%醇的混合物约1至约 2小时产生产物,依次用蒸馏水洗涤产物,形成洗涤的沉淀物,将洗涤的沉淀物在约-40℃保持24小时,除霜,过滤和干燥沉淀物,并依次加热和 冷却沉淀物以获得最终的As 4 N 6 O 6产物。