Abstract:
Embodiments disclosed herein relate to a method including feeding an invert emulsion wellbore fluid, or a previously used invert emulsion wellbore fluid, into a mixing unit; adding an additive to the mixing unit; delivering the invert emulsion wellbore fluid and the additive to one or more stages of the mixing unit, the mixing unit having a shear rate ranging from about 10,000 s−1 to about 100,000 s−1. The invert emulsion wellbore fluid includes a non-oleaginous fluid being the discontinuous internal aqueous phase of the wellbore fluid, and an oleaginous fluid being the continuous external phase of the wellbore fluid.
Abstract:
A vibratory separator includes a screen frame having an upper screen surface and a plurality of openings and a first screen insert disposed in a first opening of the plurality of openings of the screen frame, the screen insert having a screen surface positioned at a first height above the supper screen surface. The vibratory separator also includes a second screen insert disposed in a second opening of the plurality of openings of the second screen frame, wherein a screen surface of the second screen insert is positioned at a second height. The second height may be different from the first height. A method of processing fluid includes providing a flow of fluid to a vibratory separator, and flowing the fluid over a screen having a first screen insert positioned at a first height.
Abstract:
A wellbore fluid that includes an aqueous based fluid; an amphoteric, viscoelastic surfactant; and a modified starch is disclosed. Methods of drilling subterranean wells, methods of reducing the loss of fluid out of subterranean wells, and methods of completing wellbores using aqueous-based fluids having an ampoteric, viscoelastic surfactant and a modified starch are also disclosed.
Abstract:
A system for testing a drilling fluid including a vessel having a fluid inlet, a filtrate outlet, a fluid outlet, and at least one permeable media disposed within the vessel. The system further including a base fluid container in fluid communication with the fluid inlet, a test fluid container in fluid communication with the fluid inlet, a filtrate container in fluid communication with the filtrate outlet, and a collection container in fluid communication with the fluid outlet. Additionally, the system includes a data acquisition device configured to receive data from at least one of the vessel, the fluid container, the filtrate container, and the collection container. Also, a method for determining sealing characteristics of a drilling fluid including injecting a test fluid having a fluid loss control material from at least fluid container to a vessel, the vessel having a permeable media having two plates disposed to create a variable gap. The methods further including measuring a fracture tip fluid loss through the variable gap and measuring a matrix fluid loss through the permeable media.
Abstract:
An apparatus comprises a telescoping marine riser action and one of a rotating control device and an annular blow out preventer. The telescoping marine riser section comprises an inner barrel and an outer barrel. The one of a rotating control device and an annular blow out preventer is disposed inside the outer barrel
Abstract:
A low electrical conductivity water-based wellbore fluid for use in drilling wells through a formation containing a clay which swells in the presence of water, said wellbore fluid that includes an aqueous base fluid; and a polymeric non-ionic tertiary amine is disclosed. Methods of using such fluids are also disclosed.
Abstract:
Methods and apparatus for measuring sag properties of a drilling fluid using a rotary viscometer. An insert, or shoe, is placed at the bottom of the heat cup containing the fluid to be tested. A rotating cylinder is disposed within the fluid and solid particles are allowed to settle toward the bottom of the heat cup. The shoe incorporates a curved and inclined upper surface that directs the settled particles toward a well non-centrally located in the shoe. As the test is performed, fluid samples can be withdrawn from the well and analyzed. The samples can then be returned to the well and the test continued. The insert concentrates the settled solids into a single location, which increases the sensitivity of the test and provides a location for sample acquisition that is easily and repeatedly located, which allows for improved correlation with laboratory and flow loop results.
Abstract:
In ridding fluids, including hydrocarbon fluids, both gaseous and liquid, of sulfur compounds including hydrogen sulfide, oxides of sulfur, and thiols, the present invention uses a small quantity of an activator, generally a noble metal oxide, preferably a copper species and/or a manganese species, along with a known oxide product, such as iron oxide, iron hydroxide, zinc oxide, zinc hydroxide, manganese oxide, manganese hydroxide, or combinations thereof, to thoroughly remove sulfur contaminants in a short amount of time. The activator allows for the use of smaller reactor vessels and the production of hydrocarbon fluids substantially free of sulfur products.
Abstract:
Compositions may include an asphaltene dispersant that is the product of a reaction between a polysaccharide having at least two sugar subunits and one or more fatty acid reagents, and a petroleum fluid produced from a subterranean formation and containing asphaltenes therein. The asphaltene dispersant may have a molecular weight of at least 4000 Da. Compositions may further include an aromatic solvent. Methods may include contacting a hydrocarbon fluid with an asphaltene dispersant dissolved in an aromatic solvent, wherein the asphaltene dispersant is the product of the reaction of a polysaccharide and one or more fatty acid reagents. Methods may also include contacting a hydrocarbon fluid with an asphaltene, wherein the asphaltene dispersant is the product of the reaction of a polysaccharide and one or more fatty acid reagents and has a molecular weight of at least 4000 Da.
Abstract:
Methods may include quantifying the concentration of residual free amine and/or free carboxylic acid in a product mixture prepared from a reaction of a multireactive species and a fatty reagent; verifying that the concentration for the free amine and/or free acid in the product mixture is within an acceptable threshold for a given application; and combining the product mixture with one or more wellbore fluid components to generate the wellbore fluid. In another aspect, methods may include including reacting the multireactive species and a fatty reactant to generate a product mixture; quantifying the concentration of residual free amine and/or free carboxylic acid in the product mixture; verifying that the concentration for the free amine and/or free acid in the product mixture is within an acceptable threshold for a given application; and collecting the product mixture.