Abstract:
A process for making a lithographic printing plate, comprising: an exposure step of imagewise exposing a lithographic printing plate precursor that comprises, above a hydrophilic support, a photosensitive layer comprising (A) a compound that generates a radical upon the application of light or heat, (B) a polymer having an aromatic carboxy group in a side chain, (C) a polymerizable compound, and (D) an infrared absorber; and a development processing step using one type of processing liquid, wherein the processing liquid has a pH of 8.5 to 10.8.
Abstract:
To provide an on-press development type lithographic printing plate precursor excellent in ink receptivity and printing durability. A lithographic printing plate precursor which includes a support, an image-recording layer which contains a sensitizing dye, a polymerization initiator and a polymerizable compound and an unexposed area of which is capable of being removed by supplying after exposure, at least any of printing ink and dampening water on a printing machine, and an overcoat layer containing a water-soluble resin in this order, wherein the overcoat layer is substantially not mixed with the image-recording layer.
Abstract:
A negative-working lithographic printing plate precursor is disclosed that can be developed on the press without going through a development processing step, and a method of lithographic printing is also disclosed that uses this negative-working lithographic printing plate precursor. Also disclosed are a negative-working lithographic printing plate precursor that can be developed by a water-soluble resin-containing aqueous solution and a method of lithographic printing that uses this negative-working lithographic printing plate precursor. A negative-working lithographic printing plate precursor is provided that exhibits an excellent fine line reproducibility in nonimage areas even when printing is performed using ultraviolet-curing ink (UV ink). Also provided is a negative-working lithographic printing plate precursor that exhibits an excellent combination of fine line reproducibility and printing durability and that resists the production of scum during on-press development. The negative-working lithographic printing plate precursor has a support and has thereon a photopolymerizable layer that contains a polymer compound that has the urea bond in the main chain and a hydrophilic group and a carboxylic acid content less than 0.05 meq/g. The method of lithographic printing uses this negative-working lithographic printing plate precursor.
Abstract:
Provided is a lithographic printing plate precursor excellent in the printing durability, staining resistance and developability. The lithographic printing plate precursor comprises, on a support, an image recording layer, and an undercoat layer provided between the support and the image recording layer, the undercoat layer containing a polymer compound (D) composed of repeating units, the polymer compound (D) having, at the terminal of the principal chain thereof, a group having one or more groups selected from hydrophilic group and radical-polymerizable ethylenic unsaturated group, and each repeating unit having, as a side chain bound to the principal chain, one or more groups selected from support-adsorptive groups.
Abstract:
A lithographic printing plate precursor includes an image-recording layer and a support, and the image-recording layer contains: (A) at least one compound selected from compounds represented by the following formulae (1) and (2); and (B) an infrared absorbing agent: wherein R1 and R2 each represents Ra—SO3—, Ra—CO2— or Ra—OCO2—, Ra represents a monovalent organic group, R3 to R12 each represents a hydrogen atom or a monovalent substituent, or adjacent two of R3 to R12 may be combined with each other to form a ring, X1, Y1 and Z1 and X2, Y2 and Z2 each represents an atomic group necessary to form a thiazole ring, an oxazole ring, an imidazole ring, a triazole ring or a 3H-indole ring, provided that one nitrogen atom of the imidazole ring is connected to a hydrogen atom or a monovalent organic group.
Abstract:
To provide a coloring photosensitive composition and a lithographic printing plate precursor, ensuring that coloring stability after exposure by infrared laser exposure is good and high coloring is obtained even when exposed after the elapse of time.These can be a coloring photosensitive composition containing a microgel encapsulating (A) a polymer having a glass transition temperature of 50° C. or more, (B) a photoinitiator, and (C) an infrared absorbing dye, and a lithographic printing plate precursor having an image-recording layer containing the composition.
Abstract:
A method of manufacturing a planographic printing plate is provided in which, even when an alkaline developer having a relatively low pH is used, the development property is excellent and the generation of development scum over time is inhibited. The manufacturing method includes, in this order: subjecting a positive-working planographic printing plate precursor having an image recording layer on a support to imagewise light exposure, the image recording layer including a lower layer containing an infrared absorbing agent, an alkali-soluble resin, and a copolymer at least including a structural unit derived from acrylonitrile and a structural unit derived from styrene, and an upper layer containing a water-insoluble and alkali-soluble resin; and developing the positive-working planographic printing plate precursor after the light exposure by using an aqueous alkali solution which has a pH of 8.5 to 10.8 and contains an anionic surfactant.
Abstract:
A processing method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor comprising a support on a surface of which at least one of: a hydrophilizing treatment; and an undercoat layer has been provided and an image-recording layer, to cure an exposed area of the image-recording layer; and undergoing developing processing with an aqueous solution having pH of from 2 to 10, wherein the aqueous solution comprises an amphoteric surfactant and an anionic surfactant selected from an anionic surfactant having an aliphatic chain and a total number of carbon atoms included in the aliphatic chain of 6 or more and an anionic surfactant having an aromatic ring and a total number of carbon atoms of 12 or more, and a content of the anionic surfactant is from 0.1 to 3.3% by weight of the aqueous solution.
Abstract:
A plate making method of a lithographic printing plate precursor includes: exposing imagewise a lithographic printing plate precursor including a support and an image-forming layer and containing (A) a compound generating an acid with light or heat, (B) an aromatic hydrocarbon compound or heterocyclic compound substituted with a functional group containing a nitrogen atom and (C) an aromatic aldehyde protected with an acid-decomposable group; and removing an unexposed area of the image-forming layer of the lithographic printing plate precursor by supplying at least one of dampening water and ink on a cylinder of a printing machine.
Abstract:
A lithographic printing plate precursor is provided that includes, above a support, a photosensitive layer including (i) a binder polymer, (ii) an ethylenically unsaturated compound, and (iii) a polymerization initiator, the ethylenically unsaturated compound (ii) including a compound represented by Formula (1) below. (In Formula (1), L denotes an (m+n)-valent linking group, the Ds independently denote a group selected from the group consisting of groups represented by Formulae (A) to (D) below, the Rs independently denote a monovalent substituent, m denotes an integer of 1 to 20, and n denotes an integer of 2 to 20.) (In Formulae (A) to (D), X, Y, and Z independently denote an oxygen atom, a sulfur atom, or NR17, R4 to R14 and R17 independently denote a hydrogen atom or a monovalent substituent, R15 denotes a hydrogen atom or a methyl group, R16 denotes a monovalent substituent, and k denotes an integer of 0 to 4.) There is also provided a process for producing a lithographic printing plate, including an exposure step of imagewise exposing the lithographic printing plate precursor and a development step of removing the photosensitive layer of a non-exposed portion in the presence of a developer having buffering capacity.