Abstract:
Trenches are formed through a top semiconductor layer and a buried insulator layer of a semiconductor-on-insulator (SOI) substrate. A selective epitaxy is performed to form bulk semiconductor portions filling the trenches and in epitaxial alignment with the semiconductor material of a handle substrate. At least one dielectric layer is deposited over the top semiconductor layer and the bulk semiconductor portions, and is patterned to form openings over selected areas of the top semiconductor layer and the bulk semiconductor portions. A semiconductor alloy material is deposited within the openings directly on physically exposed surfaces of the top semiconductor layer and the bulk semiconductor portions. The semiconductor alloy material intermixes with the underlying semiconductor materials in a subsequent anneal. Within each of the SOI region and the bulk region, two types of semiconductor material portions are formed depending on whether a semiconductor material intermixes with the semiconductor alloy material.
Abstract:
Improved fin field effect transistor (FinFET) devices and methods for fabrication thereof. In one aspect, a method for fabricating a FinFET device comprises: a silicon substrate on which a silicon epitaxial layer is grown is provided. Sacrificial structures on the substrate are formed from the epitaxial layer. A blanket silicon layer is formed over the sacrificial structures and exposed substrate portions, the blanket silicon layer having upper and lower portions of uniform thickness and intermediate portions interposed between the upper and lower portions of non-uniform thickness and having an angle of formation. An array of semiconducting fins is formed from the blanket silicon layer and a non-conformal layer formed over the blanket layer. The sacrificial structures are removed and the resulting void filled with isolation structures under the channel regions. Source and drain are formed in the source/drain regions during a fin merge of the FinFET.
Abstract:
A method for forming contacts in a semiconductor device includes forming a plurality of substantially parallel semiconductor fins on a dielectric layer of a substrate having a gate structure formed transversely to a longitudinal axis of the fins. The fins are merged by epitaxially growing a crystalline material between the fins. A field dielectric layer is deposited over the fins and the crystalline material. Trenches that run transversely to the longitudinal axis of the fins are formed to expose the fins in the trenches. An interface layer is formed over portions of the fins exposed in the trenches. Contact lines are formed in the trenches that contact a top surface of the interface layer on the fins and at least a portion of side surfaces of the interface layer on the fins.
Abstract:
A shallow trench is formed to extend into a handle substrate of a semiconductor-on-insulator (SOI) layer. A dielectric liner stack of a dielectric metal oxide layer and a silicon nitride layer is formed in the shallow trench, followed by deposition of a shallow trench isolation fill portion. The dielectric liner stack is removed from above a top surface of a top semiconductor portion, followed by removal of a silicon nitride pad layer and an upper vertical portion of the dielectric metal oxide layer. A divot laterally surrounding a stack of a top semiconductor portion and a buried insulator portion is filled with a silicon nitride portion. Gate structures and source/drain structures are subsequently formed. The silicon nitride portion or the dielectric metal oxide layer functions as a stopping layer during formation of source/drain contact via holes, thereby preventing electrical shorts between source/drain contact via structures and the handle substrate.