Abstract:
The present invention relates to components of catalysts for the polymerization of olefins comprising a metallocene compound and a magnesium halide which have particular values of porosity and surface area. Group 4 and vanadium metallocenes are useful metallocenes and the components typically include an electron donor such as an ether, ester or ketone. In particular the components of the invention have surface area (BET) greater than about 50 m2/g, porosity (BET) greater than about 0.15 cm3/g and porosity (Hg) greater than 0.3 cm3/g, with the proviso that when the surface area is less than about 150 m2g, the porosity (Hg) is less than about 1.5 cm3/g. The magnesium halide is complexed by an ether, ester, or ketone electro donor. The components of the invention are particularly suitable for the preparation of catalysts for the gas-phase polymerization of &agr;-olefins.
Abstract:
The present invention provides a solid acid catalyst developing high activity and exhibiting high durability in various organic reactions. That is, the present invention provides a solid acid catalyst having the structure (A) in which a hydrogen atom is eliminated from at least one of OH groups contained in an inorganic phosphorus acid, the structure (B) in which a hydrogen atom is eliminated from at least one of OH groups contained in an organic phosphorus acid represented by the formula (1) or (2) and at least one metal atom (C) selected from aluminum, gallium and iron and a method for producing an ester, a ketal or an acetal by using the solid acid catalyst; wherein each of —R1 and —R2 is selected from —R, —OR, —OH and —H in which at least one of —R1 and —R2 is —R or —OR, given that —R is an organic group having 1-22 carbon atoms.
Abstract:
Disclosed is for the preparation of a catalytic composition for the polymerization of alpha-olefins. The catalyst comprises a compound of a transition metal (i) of Groups 4 to 6 of the Periodic Table, containing at least one possibly substituted cyclopentadiene ligand, and an activator (ii) chosen from aluminoxanes and ionizing agents supported on a support (iii) consisting of porous particles of polyolefin(s). Preparation includes a preliminary polymerization which includes contact with an alpha-olefin, under polymerizing conditions, in a diluent whose kinematic viscosity, measured at 20° C., is from 3 to 3000 cSt (centistokes) from 3 to 3000 mm2/s, such as mineral oil which may be derived from coal tars and petroleum fractions, to form from 0.01 to 50 g of polyolefin per g of catalyst containing compounds (i), (ii) and (iii).
Abstract:
This invention relates to metallocene compositions and their use in the preparation of catalyst systems for olefin polymerization, particularly propylene polymerization. In one embodiment, the metallocenes of the present invention may be represented by the formula: wherein: M is a metal of Group 4, 5, or 6 of the Periodic Table; R1 and R2 are identical or different, , and are one of a hydrogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C10 aryl group, a C6-C10 aryloxy group, a C2-C40 alkenyl group, a C7-C40 arylalkyl group C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, or a halogen atom, or are a conjugated diene which is optionally substituted with one or more hydrocarbyl, tri(hydrocarbyl)silyl groups or tri(hydrocarbyl)silylhydrocarbyl groups, said diene having up to 30 atoms not counting hydrogen; R5 and R6 are identical or different, are one of a hydrogen atom, a halogen atom, a C1-C10 alkyl group, which may be halogenated, a C6-C10 aryl group, which may be halogenated, a C2-C10 alkenyl group, a C7-C40-arylalkyl group, a C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, a —NR215, —SR15, —OR15, —OSiR315 or —PR215 radical, wherein: R15 is one of a halogen atom, a C1-C10 alkyl group, or a C6-C10 aryl group,; R7 is wherein: R17 to R24 are as defined for R1 and R2, or two or more adjacent radicals R17 to R24, including R20 and R21, together with the atoms connecting them form one or more rings; M2 is carbon, silicon, germanium or tin; the radicals R3, R4, and R10 are identical or different and have the meanings stated for R5 and R6; or two adjacent R10 radicals can be joined together to form a ring system.
Abstract:
This invention relates to metallocene compositions and their use in the preparation of catalyst systems for olefin polymerization, particularly propylene polymerization. In one embodiment, the metallocenes of the present invention may be represented by the formula: wherein: M is a metal of Group 4, 5, or 6 of the Periodic Table; R1 and R2 are identical or different, and are one of a hydrogen atom, a C1-C10 alkyl group, a C1-C10 alkoxy group, a C6-C10 aryl group, a C6-C10 aryloxy group, a C2-C40 alkenyl group, a C7-C40 arylalkyl groupa C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, or a halogen atom, or are a conjugated diene which is optionally substituted with one or more hydrocarbyl, tri(hydrocarbyl)silyl groups or tri(hydrocarbyl)silylhydrocarbyl groups, said diene having up to 30 atoms not counting hydrogen; R5 and R6 are identical or different, are one of a hydrogen atom, a halogen atom, a C1-C10 alkyl group, which may be halogenated, a C6-C10 aryl group, which may be halogenated, a C2-C10 alkenyl group, a C7-C40 arylalkyl group, a C7-C40 alkylaryl group, a C8-C40 arylalkenyl group, a —NR215, —SR15, —OR15, —OSiR315 or —PR215 radical, wherein: R15 is one of a halogen atom, a C1-C10 alkyl group, or a C6-C10 aryl group; R7 is wherein: R17 to R24 are as defined for R1 and R2, or two or more adjacent radicals R17 to R24, including R20 and R21, together with the atoms connecting them form one or more rings; M2 is carbon, silicon, germanium or tin; the radicals R3, R4, and R10 are identical or different and have the meanings stated for R5 and R6; or two adjacent R10 radicals can be joined together to form a ring system.
Abstract:
The invention provides a metallocene catalyst for use in preparing polyolefins having low molecular weight. The catalyst comprises a bridged metallocene in which one of the cyclopentadienyl rings is substituted in a substantially different manner from the other ring. The catalyst comprises a metallocene compound generally described by the formula R″(C5R4)(R′2C5C4R′4)MeQp wherein (C5R4) is a substituted cyclopentadienyl ring; (R′2C5C4R′4n) is an indenyl ring or substituted indenyl ring; each R and R′ is hydrogen or hydrocarbyl radical having from 1-20 carbon atoms, a halogen, an alkoxy, and alkoxy alkyl or an alkylamino radical, each R and R′ may be the same or different; (C5R4) has one R substituent in a distal position which is at least as bulky as a t-butyl radical; R″ is a structural bridge between the (C5R4) and (R′2C5C4R′4) rings to impart stereorigidity; Q is a hydrocarbyl radical, such as an alkyl, aryl, alkenyl, alkylaryl or arylalkyl radical having 1-20 carbon atoms or is a halogen; Me is a Group IIIB, IVB, VB, or VIB metal as positioned in the Periodic Table of Elements; and p is the valence of Me minus 2.
Abstract:
The present invention relates to a two-component supported catalyst, consisting of a) at least one transition metal compound applied on to an inorganic or polymeric organic supporting material, the metal being selected from the group of the d and f elements of the periodic table according to Mendeleev, b) at least one organometallic compound applied on to an inorganic or polymeric organic supporting material, the metal being selected from the group of the IIa, IIb and IIIb elements of the periodic table (F. A. Cotton, G. Wilkinson, Anorganische Chemie, 4th edition, VCH Verlagsgesellschaft mbH, Weinheim, 1985) and c) optionally at least one modifier which is supported on a) and/or on b), the transition metal compound in component a) being used in quantities of 0.1 to 100 mmol, based on 100 g of the supporting material, and the organometallic compound in component b) being used in quantities of 0.1 to 100 mmol, based on 100 g of the supporting material, and component c) being used in quantities of 0.01 to 500 mmol, based on 100 g of the supporting material, and the supporting materials of components a) to b) being used in quantitative ratios by weight (g/g) of 1.10−3 to 1000, and at least one of components a) or b) having a supporting material with an average particle size before or during polymerisation of
Abstract:
The present invention relates to a process for preparing a catalyst by activating a catalytic composition which comprises a) at least one metal of group IB or IIB or a compound thereof, b) where appropriate a carrier which comprises treating the composition with an alkyne of the general formula I R1—C≡C—R2 (I) in which R1 is alkyl, cycloalkyl, aryl, hydroxyalkyl, haloalkyl, alkoxy or alkoxyalkyl, R2 is a hydrogen atom, alkyl, cycloalkyl or aryl, and a carbonyl compound of the general formula II in which R3 and R4 are, independently of one another, a hydrogen atom, alkyl, haloalkyl, cycloalkyl or aryl, to catalysts obtainable by this process, and to alkynylations and aminoalkylations employing these catalysts.
Abstract:
A process for producing a metallocycle metallocene comprising reacting a reactant metallocene which has a cyclopentadienyl group having an alkenyl group attached which has at least 3 carbon atoms with about 2 molar equivalents of an alkali metal alkyl having at least 4 carbon atoms, catalyst systems resulting from the combination of the metallocycle metallocene and an organic cocatalyst, and polymerization processes using such catalyst systems are disclosed.
Abstract:
Metallocycle metallocenes are produced by reacting a first metallocene having an aralkyl group or an aryl dialkyl silyl group attached to a cyclodienyl group with about two molar equivalents of an alkali metal alkyl having at least 4 carbon atoms. The use of the metallocycle metallocenes as components of catalyst for the polymerization of olefins is also disclosed.