摘要:
Supported catalyst systems and methods of forming the same are described herein. In one specific embodiment, the methods generally include providing an inorganic support material and contacting the inorganic support material with an aluminum fluoride compound represented by the formula AlFpX3-pBq to form an aluminum fluoride impregnated support, wherein X is selected from Cl, Br and OH−, B is H2O, p is selected from 1 to 3 and q is selected from 0 to 6. The method further includes contacting the aluminum fluoride impregnated support with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
摘要:
Supported catalyst systems, methods of forming polyolefins and the formed polymers are generally described herein. The methods generally include identifying desired polymer properties, providing a transition metal compound and selecting a support material capable of producing the desired polymer properties, wherein the support material includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof.
摘要:
Supported catalyst systems and methods of forming the same are generally described herein. The methods generally include providing a support material including silica-alumina prepared by cogel methods, contacting the support material with a fluorinating agent to form a fluorinated support and contacting the fluorinated support with a transition metal compound to form a supported catalyst system.
摘要:
Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R′ and R″ are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
摘要:
A process for the preparation of a pyridinyl-linked bis-amino ligand that comprises, (a) reacting 2,6-dibromophenyl amine with an arylboronic acid component which is substituted or unsubstituted to produce a 2,6-diarylphenyl amine which is substituted or unsubstituted; (b) reacting the 2,6-diarylphenyl amine with a 2,6-dialkanoic pyridine characterized by the formula: wherein R′ and R″ are each independently a C1–C20 hydrocarbyl group; to produce a mono-imine ligand characterized by the formula: wherein TRP is a terphenyl group which is substituted or unsubstituted; and (c) reacting the mono-imine ligand with an aniline which may be substituted or unsubstituted to produce a bis-amine ligand characterized by the structure: wherein: TRP is a substituted or unsubstituted terphenyl group; and AR is a substituted or unsubstituted aryl group.
摘要:
Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R′ and R″ are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
摘要:
A process for the preparation of a supported metallocene catalyst incorporating metallocene and co-catalysts components on a support. There is provided a particulate catalyst support material in which an alumoxane co-catalyst is incorporated onto the support particles and contacted with a dispersion of a metallocene catalyst in an aromatic hydrocarbon solvent. The metallocene solvent dispersion and the alumoxane-containing support are mixed at a temperature of about 10° C. or less for a period sufficient to enable the metallocene to become reactively supported on the alumoxane support material. The supported catalyst is recovered from the aromatic solvent and then washed optionally with an aromatic hydrocarbon and then sequentially with a paraffinic hydrocarbon solvent at a temperature of about 10° C. or less. The washed catalyst is dispersed in a viscous mineral oil having a viscosity which is substantially greater that the viscosity of the paraffinic hydrocarbon solvent.
摘要:
The invention provides a process for making a metallocene catalyst supported on silica treated with MAO. The invention includes supporting the metallocene compound on a MAO-treated silica at a temperature of below 0.degree. C. The supported catalyst is activated with an aluminum alkyl. The catalyst may be prepolymerized in a tubular reactor prior to being introduced into the polymerization reaction zone.
摘要:
In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A′ and A″ are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
摘要:
Copolymers and methods of forming copolymers are described herein. The methods generally include providing a transition metal compound represented by the formula [L]mM[A]n, wherein L is a bulky ligand including bis-indenyl, A is a leaving group, M is a transition metal and m and n are such that the total ligand valency corresponds to the transition metal valency and providing a support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof. The methods further include contacting the transition metal compound with the support material to form an active supported catalyst system, wherein the contact of the transition metal compound with the support material occurs in proximity to contact with monomer and contacting the active supported catalyst system with a plurality of monomers to form an olefin copolymer.
摘要翻译:共聚物和形成共聚物的方法在本文中描述。 所述方法通常包括提供由式[L] M M [A] n N表示的过渡金属化合物,其中L是包含双茚基的体积大的配体,A是 离去基团,M是过渡金属,m和n使得总配体价态对应于过渡金属价态,并提供具有选自Si-O-Al-F,F-Si-O -Al,F-Si-O-Al-F及其组合。 所述方法还包括使过渡金属化合物与载体材料接触以形成活性负载催化剂体系,其中过渡金属化合物与载体材料的接触在与单体接触附近发生并与活性负载的催化剂体系接触多个 的单体以形成烯烃共聚物。