MATRIX SKETCHING USING ANALOG CROSSBAR ARCHITECTURES

    公开(公告)号:US20210357540A1

    公开(公告)日:2021-11-18

    申请号:US16874819

    申请日:2020-05-15

    Abstract: A computer-implemented method is presented for performing matrix sketching by employing an analog crossbar architecture. The method includes low rank updating a first matrix for a first period of time, copying the first matrix into a dynamic correction computing device, switching to a second matrix to low rank update the second matrix for a second period of time, as the second matrix is low rank updated, feeding the first matrix with first stochastic pulses to reset the first matrix back to a first matrix symmetry point, copying the second matrix into the dynamic correction computing device, switching back to the first matrix to low rank update the first matrix for a third period of time, and as the first matrix is low rank updated, feeding the second matrix with second stochastic pulses to reset the second matrix back to a second matrix symmetry point.

    Systems and methods for the segmentation of multi-modal image data

    公开(公告)号:US11170508B2

    公开(公告)日:2021-11-09

    申请号:US16959693

    申请日:2019-01-03

    Abstract: There is provided a computer implemented method of automatic segmentation of three dimensional (3D) anatomical region of interest(s) (ROI) that includes predefined anatomical structure(s) of a target individual, comprising: receiving 3D images of a target individual, each including the predefined anatomical structure(s), each 3D image is based on a different respective imaging modality. In one implementation, each respective 3D image is inputted into a respective processing component of a multi-modal neural network, wherein each processing component independently computes a respective intermediate, and the intermediate outputs are inputted into a common last convolutional layer(s) for computing the indication of segmented 3D ROI(s). In another implementation, each respective 3D image is inputted into a respective encoding-contracting component a multi-modal neural network, wherein each encoding-contracting component independently computes a respective intermediate output. The intermediate outputs are inputted into a single common decoding-expanding component for computing the indication of segmented 3D ROI(s).

Patent Agency Ranking