Abstract:
A display device includes a display panel, a data driving part and a gate driving part. The display panel includes a first pixel row. The first pixel row includes a first pixel connected to an (n+1)-th gate line and an (m+1)-th data line (where ‘n’ and ‘m’ are natural numbers), and a second pixel connected to an n-th gate line and an (m+2)-th data line. The data driving part applies a data voltage having a first polarity with respect to a reference voltage to the (m+1)-th data line, and applies a data voltage having a second polarity with respect to the reference voltage to the (m+2)-th data line. The gate driving part sequentially applies a gate signal to the n-th gate line and the (n+1)-th gate line.
Abstract:
A nitride semiconductor light emitting device and a method of manufacturing the same are disclosed. The nitride semiconductor light emitting device comprises an n-type nitride semiconductor layer formed on a substrate, an active layer formed on the n-type nitride semiconductor layer, a p-type nitride semiconductor layer formed on the active layer, an undoped GaN layer formed on the p-type nitride semiconductor layer, an AlGaN layer formed on the undoped GaN layer to form a two-dimensional electron gas (2DEG) layer at a bonding interface between the AlGaN layer and the undoped GaN layer, and an n-side electrode and a p-side electrode respectively formed on the n-type nitride semiconductor layer and the AlGaN layer to be connected to each other. As a hetero-junction structure of GaN/AlGaN is formed on the p-type nitride semiconductor layer, contact resistance between the p-type nitride semiconductor layer and the p-side electrode is enhanced by virtue of tunneling effect through the 2DEG layer.
Abstract:
A vacuum envelope and an electron emission display having the vacuum envelope are provided. The vacuum envelope includes a first substrate and a second substrate facing the first substrate. A side member is disposed at peripheries of the first substrate and the second substrate. A first spacer is disposed between the first substrate and the second substrate at an active area of the vacuum envelope, and a second spacer is disposed between the first substrate and the second substrate at a non-active area of the vacuum envelope, the non-active area surrounding the active area. A height of the first spacer is greater than a height of the second spacer.
Abstract:
A moving device (70) determines an obstacle virtual existence region (72) of a simple graphic approximating a detected obstacle (71) to detect the obstacle (71) in a real time and determine a smooth avoidance path by calculation, thereby performing collision prediction.
Abstract:
Disclosed is a radio-over-fiber (ROF) system for supporting various services, the system comprising: a central access platform (CAP) for providing time division duplexing (TDD), frequency division duplexing (FDD), and broadcasting services, converting a TDD downward signal and FDD/broadcasting downward signals into optical signals, respectively, transmitting the converted optical signals to a remote access unit (RAU), converting a TDD upward signal and an FDD upward signal, which have been transmitted as optical signals from the RAU, into electric signals, respectively, and using an optical circulator in order to separate upward and downward signals from each other; and the RAU for converting the TDD downward signal and FDD/broadcasting downward signals transmitted from the CAP into electric signals, respectively, converting the TDD upward signal and FDD upward signal to be transmitted to the CAP into optical signals, respectively, and using an optical circulator in order to separate upward and downward signals from each other, wherein the RAU includes a plurality of signal filtering/separating/combining units, which wirelessly emit the TDD downward signal and FDD/broadcasting downward signals, having been converted into electric signals, through an antenna, and which separate wirelessly-received TDD upward signal and FDD upward signal from each other.
Abstract:
A display driver generates a respective charge pumping signal and respective driving signals synchronized to a respective same clock signal for each of the CPU and video interface modes. Because such respective signals are synchronized to a respective same clock signal, the noise superimposed on the driving signals applied on a display panel is regular and uniform across the whole display panel, for each of the CPU and video interface modes. Accordingly, affects of such regular noise are advantageously not noticeable to the human eye, for both the video and CPU interface modes of operation.
Abstract:
A touch sensor is installed inside a liquid crystal display panel to sense a touch operation and includes a light sensing part including a photodiode, a capacitance sensing part including a liquid crystal capacitor, and a sensing signal output part. The light sensing part generates a control signal corresponding to a variation in the amount of external light when the liquid crystal display panel is touched. The capacitance sensing part varies the control signal based on a variation in the capacitance of the liquid crystal capacitor when the liquid crystal display panel is touched. The sensing signal output part generates a sensing signal in response to the control signal and determines an output timing of the sensing signal.
Abstract:
This invention relates to novel compositions of botulinum toxin that are stabilized using HTV-TAT fragments or derivatives of HTV-TAT fragments. The composition can be administered for various therapeutic, aesthetic and/or cosmetic purposes. The invention also provides method for stabilizing botulinum toxin using HIV-TAT fragments or derivatives or HIV-TAT fragments.
Abstract:
A display driver generates a respective charge pumping signal and respective driving signals synchronized to a respective same clock signal for each of the CPU and video interface modes. Because such respective signals are synchronized to a respective same clock signal, the noise superimposed on the driving signals applied on a display panel is regular and uniform across the whole display panel, for each of the CPU and video interface modes. Accordingly, affects of such regular noise are advantageously not noticeable to the human eye, for both the video and CPU interface modes of operation.
Abstract:
A method for establishing an interface between a host and a plurality of memory devices of a system that utilizes a Multimedia Card (MMC)/Secure Digital (SD) protocol according to an interleaving scheme. A host sequentially transmits a first sequence of commands and data to a system bus in order to allow a first memory device among the memory devices to perform a first operation. The host then transmits a second sequence of commands and data to the system bus to allow a second memory device among the memory devices to perform a second operation after transmitting the first sequence of commands and data.