Abstract:
An Internet infrastructure contains a search server that delivers search result pages of web sites to client devices based upon a search string. Maxima categories are provided that sort search results or web pages based upon popularity and/or context similarity. A web browser contained within a client device is coupled to display various search result pages of web sites delivered by the search server. A maxima determination module within the search server responds to the delivery of the initial search string by first categorizing search results applicability to the search string on the basis of maxima or by generating maxima categories with search results contained therein that correlated to the search string. These search results within each applicable maximum are then sorting on the basis of popularity within each of the maxima categories to effectuate popularity ranks for each search result or web page. User interaction with search results are monitored to better select search maxima and popularity ranks for subsequent search result requests for this search string, whereby the desirability of search results provided to the user improves over time.
Abstract:
A wireless terminal tracks a tracked wireless terminal and displays tracking information to a user. The tracking wireless terminal sends a tracking request for the tracked wireless terminal via a supporting wireless network infrastructure. When the tracking request is valid, the tracking wireless terminal receives a tracking response for the tracked wireless terminal. Based upon the tracking response, the tracking wireless terminal accesses a map segment corresponding to received location coordinates. The tracking wireless terminal determines a relative position of the location coordinates of the tracked wireless terminal with respect to the map segment. With this determination made, operation concludes with the tracking wireless terminal displaying the map segment and an icon on the map segment that represents the tracked wireless terminal. The icon representing the tracked wireless terminal is displayed at the relative position of the location coordinates of the tracked wireless terminal.
Abstract:
A system and method for providing dynamic allocation of MIMO communication resources during a single communication. Various aspects of the present invention may comprise determining a first set of MIMO communication resources to utilize for communicating a first portion of a unit of information. The first set of MIMO communication resources may be allocated for communicating the first portion of the unit of information. A second set of MIMO communication resources may be determined to utilize for communicating a second portion of the unit of information, where the second set of MIMO communication resources is different from the first set of MIMO communication resources. The second set of MIMO communication resources may be allocated for communicating the second portion of the unit of information. The first and second portions of the unit of information may, for example, be communicated consecutively or concurrently.
Abstract:
Systems and methods of printer resource sharing in a communication network are provided. In one embodiment, the system may comprise, for example, at least one communication device, a communication network, print server software, and at least one personal printer resource. The communication device may be deployed at a location. The communication network may be communicatively coupled to that communication device. The print server software may receive from the communication device via the communication network a request for printing of information content. The print server software may respond by coordinating the printing of the information content. The at least one personal printer resource may be communicatively coupled to the at least one communication device. The print server software may reside outside of the at least one personal printer resource, and the at least one personal printer resource may be accessed for printing by the communication device via the communication network.
Abstract:
Systems and methods that provide remote access are described. In one embodiment, a system may include, for example, a plurality of communication devices and a media device. The plurality of communication devices may be operatively coupled to a network and may include, for example, a native communication device The media device may be operatively coupled to the native communication device and the network. The media device may be associated with the native communication device and the network and may be capable of exchanging media content with the plurality of communication devices and the network. A profile of the media device may be stored in at least one of the media device and the native communication device. The profile may include, for example, information related to managing the media content when the media device is roaming.
Abstract:
The modular wireless headset includes at least one wearable earpiece and at least one wearable microphone, where the earpiece is physically separate from the microphone. The wearable earpiece is operably to render inbound radio frequencies received from a host device audible. To do this, the wearable earpiece includes, at least, a receiver module, a data recovery module, and a speaker module. The receiver module is operably coupled to convert the inbound RF signals. The data recovery module is operably coupled to recover audio signals from the RF signals. The speaker module is operably coupled to render the audio signals audible. The wearable microphone is operable to convert received audio signals into outbound RF signals, where the outbound RF signals are transmitted to the host device. The wearable microphone includes, at least, an audio input module and a transmitter module. The audio input module is operably coupled to convert received analog audio signals into digital audio signals. The transmitter module is operably coupled to convert the digital audio signals into the outbound RF signals.
Abstract:
The present invention provides a modular wireless headset with which to service multiple incoming audio streams. This modular wireless headset includes a wireless microphone and wireless earpiece. The wireless earpiece may exchange radio frequency (RF) signals with a base unit and render content contained within the exchanged RF signals to a user. This wireless earpiece further includes a wireless interface, a processor, a speaker, a user interface, and an authentication module. The wireless interface allows the earpiece to wirelessly communicate with the base unit. The processor recovers communications exchanged with the base unit that the speaker then renders audible. A user interface coupled to the processor may alert the user to any additional incoming audio communications. Having received the alert, the user may select between the communications. The authentication module allows the wireless earpiece and microphone to pair (forming the modular wireless headset) and register the headset with the base unit.
Abstract:
The present invention provides a modular headset operable to support both voice communications and voice activated commands. This may involve the use of multiple voice CODECs to process voice communications and voice activated commands. The modular headset includes both a microphone and wireless earpiece. The earpiece may further include an interface, a processing circuit, a speaker, a user interface, a pairing circuit, and a registration circuit. The interface allows the earpiece to communicate with the base unit that couples the modular headset to a servicing network. This coupling to the servicing network and base unit only occurs when the headset is successfully registered to the base unit. The pairing circuit and registration circuit allow the exchange of pairing or registration information between various components. The pairing circuit allows the wireless earpiece and microphone to exchange pairing information which is then compared to determine whether or not a successful pairing can be achieved. Analog to digital converts (ADCs), which may be located within either the microphone or earpiece are operable to process the transduced voice communications in accordance with either a voice CODEC or voice recognition CODEC depending on the selected mode of operation.
Abstract:
Systems and methods that prevent unauthorized access in a communications network are provided. In one embodiment, a system that prevents unauthorized access to a network device may include, for example, a network device and a headend. The headend may be coupled to a communications network. The network device may be deployed in a home environment and may be communicatively coupled to the communications network via the headend. The headend may be adapted, for example, to determine whether a request to access the network device is authorized.
Abstract:
A system and method support the exchange of media between friends, family members, and 3rd party media providers over a closed and secure media exchange network. The media may include, for example, digital video, digital audio, digital images, digital data, or any form of digital information.