Abstract:
A physical channel transmission method using inter-eNB carrier aggregation is provided for improvement of peak data rate and system throughput in a wireless communication system. The physical channel transmission method of a terminal in a communication system supporting carrier aggregation includes receiving carrier aggregation configuration information from a network; aggregating a plurality of carriers according to the carrier aggregation configuration information; and transmitting an uplink control channel on a common uplink frequency on which a plurality of base stations join the carrier aggregation.
Abstract:
A control channel transmission/reception method and apparatus are provided. The control channel transmission method of a base station includes acquiring a criterion for sorting control channels, sorting the controls channels into at least two control channel sets based on the criterion, configuring the control channels by allocating at least one antenna port to each control channel set, and transmitting the control channels as configured.
Abstract:
A method and an apparatus for transmitting/receiving channel state information for use in multi-antenna system are provided. A signal communication method of a base station having a plurality of antennas in a wireless communication system includes determining antenna ports of first and second directions based on directions of the plurality of antennas, allocating channel measurement resources for the respective antenna ports to a terminal, transmitting a feedback configuration to the terminal according to the channel measurement resources, and receiving feedback information from the terminal based on the channel measurement resource and the feedback configuration. The signal transmission/reception method and apparatus are advantageous in transmitting/receiving channel state information efficiently in the system using a plurality of antennas.
Abstract:
A method and an apparatus for transmitting and receiving Time Division Duplex (TDD) frame configuration information are disclosed. The base station transmits TDD frame configuration information as system information to a user equipment through a common control channel so as to dynamically change the TDD frame configuration according to uplink and downlink traffic conditions. The base station may deliver the same system information to all user equipments in the cell, removing ambiguity in User Equipment (UE) operations and avoiding interference. In comparison to an existing method of delivering TDD frame configuration information through system information update, the disclosed method enables user equipments to rapidly cope with traffic changes. In addition, user equipments may receive and apply TDD frame configuration information at the same time.
Abstract:
A method and an apparatus for transmitting and receiving a feedback signal in a cellular mobile communication system is provided. The method of transmitting feedback in a Cooperative Multi-Point (CoMP) system, includes receiving feedback set information including allocation information of a Channel Status Information Reference Signal (CSI-RS) transmitted for estimating a channel of a User Equipment (TIE), receiving IDentification (ID) information for identifying a CoMP set including CSI-RS allocation information from a cell operating in a CoMP mode, extracting the CoMP set using the ID information and a feedback set, detecting a first feedback mode and first feedback timing with a first CSI-RS not included in the CoMP set among CSI-RSs included in the feedback set, and generating and transmitting feedback with respect to the first CSI-RS according to the detected first feedback mode and the first feedback timing.
Abstract:
The present invention proposes a hybrid spatial multiplexing (SM) and a space division multiple access (SDMA) technique in a frequency division duplex (FDD) massive multiple-input multiple output (MIMO) system using a two-dimensional planar array antenna, which effectively transmits a channel state information reference signal (CSI-RS) for estimating a downlink two-dimensional space channel using only a limited amount of downlink radio resources, and optimally selects and performs the SM and SDMA techniques in a two-dimensional space channel. To this end, the present invention proposes a technique which defines space resource blocks (SRB) by grouping space elements (SE) having a high spatial correlation between downlink channels in the horizontal dimension and corresponding SEs thereof in the vertical dimension, and transmits CSI-RSs for estimating channels in vertical dimension SEs corresponding to one selected horizontal SE in each SRB every transmit time interval (TTI). The present invention proposes a technique wherein user equipment (UE) estimates the spatial correlation between channels of different horizontal dimension SEs belonging to the same SRB received in different TTIs and the spatial correlation between channels of horizontal dimension SEs belonging to different SRBs received in the same TTI, and feeds information for changing the size of SRB of the corresponding UE to an optimal size back to eNodeB. The present invention proposes a technique wherein the UE estimates downlink channels through CSI-RSs transmitted from each SRB, and each UE feeds an index of a preferred SRB, a rank of the corresponding SRB in the vertical dimension, and channel quality information (CQI) back to eNodeB. When each UE determines the rank, it is possible to transmit the ranks to the fullest extent in the vertical dimension and only a single rank from each SRB in the horizontal dimension.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. In accordance with an aspect of the present disclosure, a method by a terminal of a mobile communication system includes receiving, from a base station, first control information on first type data; identifying whether second control information on second type data is received from the base station; and terminating decoding of the first type data if the second control information is received.
Abstract:
A channel transmission/reception method and an apparatus for transmitting/receiving channels between a base station and a mobile terminal efficiently in a mobile communication supporting massive Multiple Input Multiple Output (MIMO) transmission are provided. The method includes determining a resource to which a Demodulation Reference Signal (DMRS) addressed to a terminal is mapped within a resource block, the DMRS resource being positioned in at least one of a first resource set capable of being allocated for DMRS and a second resource set symmetric with the first resource set on a time axis, and transmitting the DMRS and DMRS allocation information to the terminal.
Abstract:
An apparatus and a method of measuring a reference signal for efficient downlink transmission in a mobile communication system are provided. The system includes plural base stations, each having a plurality of antennas distributed in the service area thereof based on a Distributed Antenna System (DAS). A method for a base station to notify a terminal of reference signal measurement information in a mobile communication system comprises determining whether the terminal is in a Rank Indicator/Precoding Matrix Indicator (RI/PMI) disabled mode, selecting, when the terminal is in the RI/PMI disabled mode, the reference signal to be measured by the terminal between a Cell-specific Reference Signal (CRS) and a Channel Status Information Reference Signal (CSI-RS), notifying the terminal of the reference signal measurement information with the selection result, and receiving channel information generated based on the reference signal measurement information from the terminal.
Abstract:
An interference measurement method and apparatus for use in a Distributed Antenna System (DAS) is provided. The method for transmitting channel state information based on interference measurement of a terminal in a Distributed Antenna System (DAS) according to the present disclosure includes receiving configuration of Interference Measurement Resource (IMR) for measuring interferences caused by plural Transmission Points (TPs), receiving control information including scheduling information on Physical Downlink Shared Channel (PDSCH), determining whether IMR-based interference measurement and PDSCH reception occur at a same subframe, and transmitting the channel state information generated according to a result of the determination. The interference measurement method and apparatus of the present disclosure is capable of measuring interference for efficient communication in the distributed antenna system.