Abstract:
A system and method for creating a localized silence area. A mobile device may be registered with an access point base station. Any direct communication links from the mobile device to any other base stations may be removed. An indication may be given to the mobile device that the mobile device is in a localized silence zone. The indication may include a request that the mobile device operate in a silent mode, information about making outgoing calls, information about receiving incoming calls, or a combination of these. Procedures for incoming voice calls to the mobile device may be different for different priority levels.
Abstract:
A channel estimation device and method for an orthogonal frequency division multiplexing (OFDM) system for receiving OFDM symbols to generate channel estimation information is provided. The channel estimation method includes: obtaining a portion of pilot signals from a plurality of pilot signals as a first pilot set according to corresponding positions of the pilot signals in the OFDM symbols; estimating a first estimation factor by calculating the pilot signals in the first pilot set in a first direction; estimating a second estimation factor by calculating the pilot signals in the first pilot set in a second direction; obtaining a pilot signal estimation result according to the first estimation factor and the second estimation factor; and obtaining the channel estimation information according to the pilot signal estimation result.
Abstract:
Provided is automatic gain control (AGC) in which a feedback filter has a parameter that is changed based on information regarding data-packet boundaries. In one representative embodiment, the bandwidth of the filter temporarily is increased, or the time constant of the AGC filter temporarily is decreased, within a vicinity of each actual or potential packet boundary.
Abstract:
A method for connecting to an access point base station is presented in the application. Current location information of the mobile access terminal may be determined. The current location information may be determined using positioning location circuitry of the mobile access terminal to determine the current location information. Alternatively, the current location information may be determined by receiving the current location information from an external source. The mobile access terminal may determine the current location based on signals from macro base stations or other base stations, e.g., using triangulation. If the current location information indicates, the mobile access terminal may then connect to an access point base station.
Abstract:
The present invention concerns an apparatus comprising a memory, a logic circuit and a multiplexer. The memory generally comprises a first address space configured as read only and a second address space configured as read and write. The memory returns a first data item in response to a first address within the first address space. The logic circuit may be configured to (i) deassert a command signal in response to the first address not matching any of a plurality of predetermined addresses and (ii) generate a first branch instruction and assert the command signal in response to the first address matching one of the predetermined addresses in response to the matching. The multiplexer may be configured to select the first data item from the memory or the first branch instruction from the logic circuit in response to the command signal.
Abstract:
Automatic provisioning of an access point base station or femtocell. The method may include the femtocell transmitting first information (e.g., location information, signal measurement information, capability information, etc.) to a service provider (e.g., over an IP network). The femtocell may receive second information from the service provider, where the second information includes one or more operational parameters. The operational parameters may include hand-off parameters, admission policy parameters, PN or scrambling codes, power parameters, and/or other parameters. The femtocell may operate according to the received parameters to provide access for a plurality of access terminals in a local area.
Abstract:
A frequency detection circuit includes a filter, a power detector and a voltage comparator. The filter receives and filters a converted signal to generate a filtered signal. The power of the filtered signal relates to a frequency of the converted signal. The power detector generates a voltage according to the power of the filtered signal. The voltage comparator compares the voltage with multiple reference voltages to generate multiple comparison results. At least one of the inductance and capacitance of an LC tank in an amplifier is adjusted according to the comparison results.
Abstract:
A wireless apparatus having one or more first radios, one or more second radios, interface control, and a processor. The one or more first radios are coupled to one or more first communication links. The one or more second radios are coupled to one or more second communication links. The interface control is coupled to the radios, and selects and executes communications over a specific one of the one or more second communication links following termination of a fallback session over one of the one or more first communication links, where RAT information is employed by the interface control to select the specific one of the one or more second communication links. The processor receives, processes, and provides to the interface control the RAT information, where the RAT information is received prior to termination of the fallback session or as part of termination of the fallback session.
Abstract:
A mobile communications device with a wireless module and a controller module for performing a buffer status reporting procedure is provided. The wireless module performs wireless transmissions and receptions to and from a cellular station of a service network. The controller module receives machine type communication (MTC) data, determines whether to trigger a buffer status report (BSR) according to a comparison result of the data size of the MTC data and a threshold value when the MTC data arrives at an empty transmission buffer, and if so, transmits the BSR to the cellular station via the wireless module.
Abstract:
A mobile station for notification of a circuit switched event. The mobile station includes a circuit switched modem, a packetized data modem, a radio, and a tune away controller. The circuit switched communicates circuit switched data over a circuit switched network. The packetized data modem communicates packetized data over a packetized data network. The radio couples the packetized data modem to the packetized data network via a packetized data radio link, and couples the circuit switched modem to the circuit switched network via a circuit switched radio link. Only one of the links may be active at a time. The tune away controller is coupled to the circuit switched modem and to the packetized data modem, and indicates tune away events over the packetized data network so that the circuit switched event is processed by the mobile station. The tune away controller directs switching between the links.