Abstract:
A device for transport and cleaning of air by using electric ion wind, includes an elongated corona electrode), a target electrode and a direct current source that has one terminal connected to the corona electrode and the other terminal to the target electrode, the design and voltage of the corona electrode between the terminals being such that a discharge generating air ions occurs at the corona electrode. The target electrode has an extension in the longitudinal direction of the corona electrode an extension transverse to the longitudinal direction of the corona electrode. The target electrode has a certain permeability to the air flow that is generated between the electrodes, and the device has outlet openings for the air flow.
Abstract:
An arrangement for transporting air with the aid of corona-wind including tubes to extract detrimental side effects from corona discharge. A first tube is arranged with an open end located downstream of and axially in line with the corona electrode, as to face towards the electrode and such that the air flowing past in the vicinity of the corona electrode will flow into the open end of the first tube. A second tube having an open end is positioned upstream of and axially in line with the corona electrode, this second tube being directed downstream. The first tube and the second tube are connected together so that the air flowing in through the open end of the first tube will be conducted to the second tube and flow out through the open end of the second tube in the immediate vicinity of the corona electrode.
Abstract:
An arrangement for transporting air with the aid of an electric ion wind comprises a corona electrode (K) and a target electrode (M) located downstream of the corona electrode. A d.c. voltage source (3) has its terminals connected to the corona electrode and the target electrode, respectively, so that a corona discharge is generated at the corona electrode. The corona electrode (K) includes one or more wirelike electrode elements (4) located adjacent the symmetry axis of the air-flow path (1) and having, as seen in a direction perpendicular to the symmetry axis, an extension which is substantially much smaller than the cross dimension of the airflow path. The wirelike electrode elements (4) lack free, unattached ends at which the field strength exceeds the field strength at the peripheral surface of the electrode elements, thereby avoiding punctiform corona-discharge concentrations and confining the corona discharge to the peripheral surface of the electrode elements.
Abstract:
An air cleaning apparatus includes an air flow duct, with an extent in an axial direction, to accommodate air flow entering the apparatus, an air-conveying fan unit disposed in the air flow duct, a precipitator connected to a high-voltage source and with a throughflow passage for air to be cleaned. The precipitator includes two electrode elements or two groups of electrode elements, each of the respective two being connected to a respective pole of the high-voltage source, and a unipolar corona electrode disposed close to one end of the air flow duct. A target electrode is disposed at radial spacing from the corona electrode, the corona electrode being so disposed that the ions generated at it can freely spread away from the corona electrode towards the target electrode, and that the target electrode surrounds the air flow entering the apparatus.
Abstract:
An electrostatic precipitator for purifying air from charged particles. The precipitator includes at least a pair of electrode elements (R and A) spaced apart by a gap distance (a). The electrode elements are moisture-proof. At least one of the electrode elements is composed of a high ohmic cellulose material and is coated with a thin moisture-proof layer.
Abstract:
An arrangement for transporting air, with the aid of an ion-wind, includes a corona electrode (K) at least one target electrode (M) located at a distance from the corona electrode, and a d.c. voltage source (4) connected between the corona electrode and target electrode. The arrangement includes a housing (1, 5) with an inlet opening (2) in which the corona electrode (K) is disposed centrally, and an air-flow path extending from the inlet opening and containing the target electrode (M). The target electrode is located spaced form and symmetrical with the center line through the inlet opening. The housing is configured so that the air-flow path downstream of the inlet opening (2) and the corona electrode (K) branches outwardly towards the target electrode (M), thereby forcing air entering through the inlelt opening (2) out towards the target electrode (M) and preventing at least the major part of this air-flow from continuing straight forwards along the extension of the center line.