Abstract:
A process for fabricating an electrical component having at least one anisotropic electrical quality is provided. The process includes the step of ink-jet printing a plurality of dots of each of at least two electronic inks in a predetermined pattern such that the anisotropic electrical quality is manifested. The ink-jet printing step may further include the steps of: selecting a first electronic ink having a known first electrical characteristic; selecting a second electronic ink having a known second electrical characteristic; determining a positional layout for each of a plurality of dots for each of the first and second electronic inks such that the determined positional layout provides a response of the electrical component in accordance with the anisotropic electrical quality; and printing each of the plurality of dots of each of the first and second electronic inks onto a substrate according to the determined positional layout.
Abstract:
An apparatus and method for making a printed circuit board comprising a substrate and an electrical circuit is provided. The circuit is formed by deposition of a plurality of electronic inks onto the substrate and curing of each of the electronic inks. The deposition may be performed using an ink-jet printing process. The inkjet printing process may include the step of printing a plurality of layers, wherein a first layer includes at least one electronic ink deposited directly onto the substrate, and wherein each subsequent layer includes at least one electronic ink deposited on top of at least a portion of a previous layer when the previous layer has been cured. One or more of the layers may include at least two of the electronic inks.
Abstract:
A system and process for compensating for non-uniform surfaces of a substrate when direct printing traces is provided. The system and process provided herein measures the surface of a substrate and can determine whether the surface is substantially flat, rises or falls, or whether a mesa or valley is encountered. Depending on the surface feature (i.e., mesa, valley, falling or rising surface), the direct printing system can change the frequency of the printing timing signal, advance or retard the print timing signal, advance or retard the print data, or make repeated passes over certain areas. In addition, the process disclosed herein can determine whether two, three or all of the aforementioned steps for compensating for non-uniform substrates should be combined to most effectively and efficiently print on the non-uniform surface of the substrate as intended.
Abstract:
Processes for forming polyimide coatings during the formation of printed electronic features. In various embodiments, the processes include the steps of: (a) applying a polyimide precursor ink comprising a polyimide precursor onto a substrate or to an electronic feature disposed thereon, preferably through a direct write printing process, e.g., ink-jet printing, (b) converting the polyimide precursor to a polyimide coating; and (c) optionally forming an electronic feature on the polyimide coating.
Abstract:
The invention is to printed resistors and processes for forming same. The resistors comprise a conductive phase, preferably comprising conductive nanoparticles, and a resistive phase. In the processes of the invention, a resistor may be formed from a single ink or a plurality of inks. In the single ink embodiment, an ink is deposited which comprises a conductive phase precursor, a resistive phase precursor and a vehicle. The vehicle in removed and the conductive and resistive phase precursors are converted to a conductive phase and a resistive phase, respectively. In the multiple ink embodiment, a first ink comprising the conductive phase precursor and a first vehicle and a second ink comprising the resistive phase precursor and a second vehicle are deposited on the substrate. The vehicles are removed and the conductive and resistive phase precursors are converted to a conductive phase and a resistive phase, respectively.
Abstract:
A system and process for compensating for non-uniform surfaces of a substrate when direct printing traces is provided. The system and process provided herein measures the surface of a substrate and can determine whether the surface is substantially flat, rises or falls, or whether a mesa or valley is encountered. Depending on the surface feature (i.e., mesa, valley, falling or rising surface), the direct printing system can change the frequency of the printing timing signal, advance or retard the print timing signal, advance or retard the print data, or make repeated passes over certain areas. In addition, the process disclosed herein can determine whether two, three or all of the aforementioned steps for compensating for non-uniform substrates should be combined to most effectively and efficiently print on the non-uniform surface of the substrate as intended.