Abstract:
A method and apparatus to determine a first heating value of a low BTU fuel, determine a target fuel quality level based on a state of a turbine system, control a second heating value of a high BTU fuel, and inject the high BTU fuel into the low BTU fuel to achieve the target fuel quality level.
Abstract:
Control systems and a method for controlling a load point of a gas turbine engine are provided. A control system includes a controller that receives a temperature signal and a pressure signal associated with exhaust gases from the gas turbine engine. The controller is further configured to generate the fuel control signal. The controller is further configured to generate an actuator control signal such that flow restriction member is moved from the first operational position to the second operational position to restrict the flow path such that the exhaust gases have a temperature level within a desired turndown temperature range, the pressure level in the exhaust gases is less than a threshold pressure level, and the load point of the gas turbine engine is adjusted to toward a target load point.
Abstract:
In one embodiment, a system includes a turbine engine fuel nozzle having an air path, a fuel path, and a surface along the air path. The fuel path may be directed toward the surface. The turbine engine fuel nozzle also may include a heating element configured to heat the surface.
Abstract:
A system includes a fluidization device including a flow passage configured to convey a flow of solid fuel particles in a downstream direction, and a body disposed within the flow passage. The body is configured to direct the flow of solid fuel particles between the body and an outer wall of the flow passage. The fluidization device also includes a carrier gas injection port positioned radially outward from the body. The carrier gas injection port is configured to provide a flow of carrier gas in the downstream direction to break up agglomerations within the flow of solid fuel particles.
Abstract:
A turbine engine includes a turbine section having a first turbine portion and a second turbine portion arranged along a central axis. A re-heat combustor is arranged between the first and second turbine portions. The re-heat combustor includes a combustion duct having a curvilinear flow portion. The curvilinear flow portion provides an increased residence time of combustion products passing through the re-heat combustor.
Abstract:
A method and systems for a purged seal for an annular space are provided. The purged seal includes a first baffle element that extends from an inner surface of the annular space into the annular space at an oblique angle and a second baffle element that extends from an outer surface of the annular space above the first baffle element in a direction opposite gravity flow into the annular space wherein the second baffle element extends at an oblique angle. The system also includes a third baffle element that extends from the inner surface above the first baffle element in a direction of gravity flow into the annular space wherein the third baffle element extends into the annular space at an oblique angle with respect to the inner surface and wherein a distal end of the third baffle element is positioned proximate a distal end of the second baffle element.
Abstract:
An injector includes a surface and an injector hole formed in the surface. The injector also includes a groove formed in the surface, the groove surrounding the injector hole.
Abstract:
A gas fuel injector includes a first header plate, a second header plate, and a plurality of venturi tubes. The second header plate is spaced downstream from the first header plate. The plurality of venturi tubes is sealably secured to the first and second header plates. Each venturi tube of the plurality of venturi tubes is defined by a plurality of fixable components.
Abstract:
A combustor for a gas turbine includes a main fuel injector for receiving compressor discharge air and mixing the air with fuel for flow to a downstream catalytic section. The main fuel injector includes an array of venturis each having an inlet, a throat and a diffuser. A main fuel supply plenum between forward and aft plates supplies fuel to secondary annular plenums having openings for supplying fuel into the inlet of the venturis upstream of the throat. The diffusers transition from a circular cross-section at the throat to multiple discrete angularly related side walls at the diffuser exits without substantial gaps therebetween. With this arrangement, uniform flow distribution of the fuel/air, velocity and temperature is provided at the catalyst inlet.
Abstract:
According to various embodiments, a system includes a gasification fuel injector. The gasification fuel injector includes a tip portion, an annular coolant chamber disposed in the tip portion, a recessed surface for cooling control and a first structural support extending through the annular coolant chamber. The first structural support divides the annular coolant chamber into a first passage and a second passage.