Abstract:
Prosthesis delivery devices and methods are provided that enable precise control of prosthesis position during deployment. The prosthesis delivery devices may carry multiple prostheses and include deployment mechanisms for delivery of a selectable number of prostheses. Control mechanisms are provided in the prosthesis delivery devices that control either or both of the axial and rotational positions of the prostheses during deployment. This enables the deployment of multiple prostheses at a target site with precision and predictability, eliminating excessive spacing or overlap between prostheses. In particular embodiments, the prostheses of the invention are deployed in stenotic lesions in coronary or peripheral arteries or in other vascular locations.
Abstract:
The disclosure features material separators for screening excavated material (e.g., rocks from soil.) In some implementations the materials separators include (a) a supporting frame; (b) a screening surface mounted at an incline on the supporting frame, the screening surface comprising a plurality of fixed bars that are attached to the frame in a manner to resist upward movement, and a plurality of shift bars that are attached to the frame at their upper and lower ends, in a manner to allow upward movement; and (c) a shift bar actuator, positioned between the upper and lower ends of the shift bars, the shift bar actuator being configured to impart a two-stage movement to the shift bars, whereby during a first stage the upper ends are first displaced vertically, and during a second stage the lower ends pivot upward about the upper ends.
Abstract:
Apparatus for delivering stents to body lumens include one or more tubular prostheses carried at the distal end of a catheter shaft, a sheath slidably disposed over the prostheses, and a guidewire tube extending from within the sheath to the exterior of the sheath through an exit port in a sidewall thereof. A guidewire extends slidably through the guidewire tube. The sheath can be moved relative to the catheter shaft and the guidewire tube to expose the prostheses for deployment. Methods of delivering stents are also provided.
Abstract:
A turbine engine component has a substrate and a thermal barrier coating deposited onto the substrate. The thermal barrier coating comprises a ceramic material having a sodium containing compound incorporated therein. The sodium containing compound is present in a concentration so that when molten sand reacts with the coating, sodium silicate is formed as the by product.
Abstract:
A material separating apparatus comprising: a frame having a front, left and right wall, said frame having an approximately rectangular shape, a right and left back support column, an upper cross beam attached to the back support columns, a lower cross beam attached and supported by the left and right wall, two or more fixed bars firmly attached to said upper cross beam and said lower cross beam, one or more shift bars, said shift bars are pivotally fixed to said upper cross beam on one end and a lower end rests in a saddle that is fixed upon a lower clip of said lower cross beam, risers attached to the bottom side of said shift bars and a lift bar attached to the lower end of said risers, a means for adjusting the space between two or more fixed or shift bars and means for providing an upward force to said lift beam and thereby pivoting said one or more shift bars.
Abstract:
A cryogenic apparatus is provided having a nested thermally insulating structure, thermal links, a vacuum shroud, and a cryo-cooler. The nested thermally insulated structure holds a sample to be cooled while dampening the external vibrations caused by the cryo-cooler, the surrounding environment or cryo-cooler mounting surface. The thermal link is made of thermally conductive wires which connect the nested thermally insulated structure and the cryo-cooler thereby allowing the apparatus to reduce vibrations inherent in the operation of the cryo-cooler.
Abstract:
A turbine engine component has a substrate and a thermal barrier coating deposited onto the substrate. The thermal barrier coating comprises a ceramic material having a sodium containing compound incorporated therein. The sodium containing compound is present in a concentration so that when molten sand reacts with the coating, sodium silicate is formed as the by product.
Abstract:
A technology for identifying design issues during an electronic form generating process is disclosed. In one method approach, a user selected runtime environment to be applied to an electronic form is received. A form design check is performed on the electronic form. A reporting object generates a list of design issues identified by the form design check. The list of design issues is displayed in a user interface.
Abstract:
A stent deployment system includes a catheter shaft, an expandable member mounted to the catheter shaft, and one or more stents or stent segments slidably positioned on the expandable member. The stent deployment system is adapted for deployment of stents or stent segments in very long lesions and in tapered and curved vessels. The stent deployment system facilitates slidable movement of a stent in a distal direction relative to the expandable member while inhibiting slidable movement in a proximal direction relative to the expandable member.
Abstract:
Apparatus for delivering stents to body lumens include a flexible catheter shaft, an expandable member, a tubular prosthesis selectively movable in an axial direction over the expandable member, and a stop member disposed on the catheter shaft near the distal end of the catheter shaft for stopping the prosthesis at a deployment position on the expandable member. A variety of different stop members are provided according to various embodiments, such as stop members disposed outside the expandable member, stop members disposed inside the expandable member, movable stop members, and the like. Methods of delivering stents are also provided.