Abstract:
An optical-to-optical inline spatial domain multiplexing (SDM) de-multiplexer for SDM communication comprising a plurality of concentric core layers each having a beveled output end and a cladding layer concentrically surrounding each core layer. The cladding layer has an index that is lower than the index of the core layer it surrounds. Also included is a system for SDM communication comprising at least one optical source to transmit optical energy, an SDM optical carrier fiber to receive optical energy from the source and output a plurality of SDM signals, a SDM de-multiplexer as described above wherein the SDM signals output from the carrier fiber are each incident upon one of the core layers, optical output fibers positioned to couple SDM signals from each cladding layer, and a photodetector communicatively coupled to the outputs of the optical output fibers to couple the SDM signals output from the optical output fibers.
Abstract:
The method for making the fiber optic Fabry-Perot sensor includes securing an optical fiber to a substrate, and forming at least one gap in the optical fiber after the optical fiber is secured to the substrate to define at least one pair of self-aligned opposing spaced apart optical fiber end faces for the Fabry-Perot sensor. Preferably, an adhesive directly secures the at least one pair of optical fiber portions to the substrate. The opposing spaced apart optical fiber end faces are self-aligned because the pair of optical fiber end portions are formed from a single fiber which has been directly secured to the substrate. Also, each of the self-aligned spaced apart optical fiber end faces may be substantially rounded due to an electrical discharge used to form the gap. This results in integral lenses being formed as the end faces of the fiber portions.
Abstract:
The present disclosure, in some embodiments, relates to a method of determining a stent effectiveness. The method includes accessing a pre-stent intravascular image of a blood vessel of a patient. One or more pre-stent label volumes of the blood vessel are determined and one or more treatment variables associated with the pre-stent intravascular image are determined. One or more FEM-mimic simulations are generated by applying a first deep learning model to the one or more pre-stent label volumes and the one or more treatment variables. The one or more FEM-mimic simulations are used to determine a stent effectiveness metric.
Abstract:
The present disclosure, in some embodiments, relates to a method of predicting stent expansion. The method includes accessing a pre-stent intravascular image of a blood vessel of a patient and segmenting the pre-stent intravascular image to identify a lumen and a calcification lesion. A plurality of features are extracted from one or more of the lumen and the calcification lesion. A regression model is applied to one or more of the plurality of features to determine a minimum stent expansion metric (mSEM). The mSEM indicating how much a stent will expand after implantation. The mSEM is used to generate a classification of the blood vessel as an under-expanded area or a well-expanded area.
Abstract:
A decision engine includes: a genetic algorithm framework including a knowledge base of standard configurations, a candidate selector generator and a selector to select a candidate configuration from a plurality of preferred standard configurations in response to the candidate selector generator; a parallelized reasoning framework including an attack surface reasoning algorithm module to compute the security and cost tradeoffs of an attack surface associated with each candidate configuration; and a user interface framework including a web service engine where users can interact and provide feedback on direction of an evolution used in a genetic algorithm search for evolving defenses.
Abstract:
A decision engine includes: a genetic algorithm framework including a knowledge base of standard configurations, a candidate selector generator and a selector to select a candidate configuration from a plurality of preferred standard configurations in response to the candidate selector generator; a parallelized reasoning framework including an attack surface reasoning algorithm module to compute the security and cost tradeoffs of an attack surface associated with each candidate configuration; and a user interface framework including a web service engine where users can interact and provide feedback on direction of an evolution used in a genetic algorithm search for evolving defenses.
Abstract:
A modified optical PAM communication system using multiple laser sources to generate each amplitude level. The systems can be applied separately or in conjunction with another modulation system such as SDM, MDM, WDM, TDM, or other communication systems. In an embodiment, a PAM-4 system will increase data rate by a factor of two, but more complicated schemes using more lasers can be utilized to generate higher efficiency schemes. For example, a 25 Gbps NRZ signal will give 50 Gbps PAM-4 signal and higher laser systems can generate PAM-8 or PAM-16 for 75 and 100 Gbps systems respectively. These can be further applied to SDM systems to generate higher data rates equivalent to the number of SDM channels multiplied by the PAM efficiency. In embodiments, the invention may combing PAM with WDM and SDM to achieve multiple bits per symbol.
Abstract:
A modified optical PAM communication system using multiple laser sources to generate each amplitude level. The systems can be applied separately or in conjunction with another modulation system such as SDM, MDM, WDM, TDM, or other communication systems. In an embodiment, a PAM-4 system will increase data rate by a factor of two, but more complicated schemes using more lasers can be utilized to generate higher efficiency schemes. For example, a 25 Gbps NRZ signal will give 50 Gbps PAM-4 signal and higher laser systems can generate PAM-8 or PAM-16 for 75 and 100 Gbps systems respectively. These can be further applied to SDM systems to generate higher data rates equivalent to the number of SDM channels multiplied by the PAM efficiency. In embodiments, the invention may combing PAM with WDM and SDM to achieve multiple bits per symbol.
Abstract:
A rotating grooming brush comprising a brush hub having grooming elements and shroud elements, and method for grooming a surface having an unwanted material thereon. The elements extend from the brush hub and may be positioned near its outer periphery. The elements may be grooming elements forming an array and shroud elements forming a shroud array. A rigid or elastomeric shroud extending from the brush hub surface may optionally be included about the edge of the brush hub, to the outside of the grooming elements. Rotation of the grooming attachment brush causes a low pressure region to build in the central area of the brush. This low pressure region creates a resulting force that forcefully attracts the grooming attachment brush to the surface to be groomed. The resulting force is controlled by the diameter of the brush hub, arrangement, of the elements and the speed of rotation.
Abstract:
A decision engine includes: a genetic algorithm framework including a knowledge base of standard configurations, a candidate selector generator and a selector to select a candidate configuration from a plurality of preferred standard configurations in response to the candidate selector generator; a parallelized reasoning framework including an attack surface reasoning algorithm module to compute the security and cost tradeoffs of an attack surface associated with each candidate configuration; and a user interface framework including a web service engine where users can interact and provide feedback on direction of an evolution used in a genetic algorithm search for evolving defenses.