Abstract:
There is described a method of operating an optical motion sensing device comprising a light source and a photodetector device, the method comprising the steps of a) illuminating a surface portion with radiation by means of the light source, b) detecting radiation reflected from the illuminated surface portion by means of the photodetector device, c) detecting and measuring displacement with respect to the illuminated surface portion; and d) outputting motion reports that are each representative of a magnitude of the detected displacement, steps a) to d) defining a flash period and being repeated at a selected flash rate. The method further comprises the steps of e) comparing the magnitude of the detected displacement with a determined displacement threshold, and f) increasing or decreasing the flash rate if the magnitude of the detected displacement is respectively greater or lower than the displacement threshold. There is also described an optical motion sensing device implementing this method.
Abstract:
The invention concerns an optical pointing device comprising a coherent light source for illuminating a surface portion with radiation, a driver of the coherent light source for controlling coherent light emissions, a photodetector device responsive to radiation reflected from the illuminated surface portion, processing means for determining, based on the photodetector device response, a measurement of relative motion between the optical pointing device and the illuminated portion of the surface, wherein the coherent light source driver is a fault-tolerant driver comprising redundant power control means for limiting the output power of coherent light emissions.
Abstract:
A method for operating an optical sensing device having a light source and a photodetector device with at least one photosensitive element, said method comprising the steps of: (i) illuminating a surface portion with radiation by means of said light source; (ii) detecting radiation reflected from the illuminated surface portion with said at least one photosensitive element; (iii)while said surface portion is being illuminated, integrating an output signal of said at least one photosensitive element over time; (iv)comparing the output signal integration level with a first integration reference level during integration; (v) interrupting said integration step (iii) if said output signal integration level has reached said first integration reference level, or getting back to comparison step (iv) until a first integration period has elapsed if said output signal integration level has not reached said first integration reference level, and wherein said method further comprises the steps of: (vi) comparing said output signal integration level with a second integration reference level smaller than said first integration reference level, after said first integration period has elapsed; (vii) interrupting said integration step (iii), if said output signal integration level has reached at least said second integration reference level.
Abstract:
A method for operating an optical motion sensing device comprising a light source and a photodetector device, said method comprises the steps of: a) illuminating a surface portion with radiation by means of the light source; b) detecting radiation patterns reflected from the illuminated surface portion by means of the photodetector device; c) extracting motion features from the detected radiation patterns by comparing light intensity between neighbouring pixels of said photodetector device by means of comparators with a determined hysteresis threshold; d) detecting and measuring displacement with respect to the illuminated surface portion based on said extracted motion features; e) determining whether the optical motion sensing device is moving or at rest; f) adjusting said determined hysteresis threshold of the comparators between at least a low and a high hysteresis values, consisting in selecting said low hysteresis value when the optical motion sensing device is moving and selecting said high hysteresis value when the optical motion sensing device is at rest.
Abstract:
There is described a method of operating an optical motion sensing device comprising a light source and a photodetector device, the method comprising the steps of a) illuminating a surface portion with radiation by means of the light source, b) detecting radiation reflected from the illuminated surface portion by means of the photodetector device, c) detecting and measuring displacement with respect to the illuminated surface portion; and d) outputting motion reports that are each representative of a magnitude of the detected displacement, steps a) to d) defining a flash period and being repeated at a selected flash rate. The method further comprises the steps of e) comparing the magnitude of the detected displacement with a determined displacement threshold, and f) increasing or decreasing the flash rate if the magnitude of the detected displacement is respectively greater or lower than the displacement threshold. There is also described an optical motion sensing device implementing this method.
Abstract:
There is described a method for waking up an optical sensing device from a sleep mode to a motion detection mode, the optical motion sensing device comprising a light source, a photodetector device, a motion sensing unit and a control unit, the motion detection mode being defined as a mode during which motion is detected between the optical motion sensing device and a portion of a surface illuminated by the light source at a defined flash rate being set between minimum and maximum flash rate values, the motion sensing unit sending motion reports to the control unit, the sleep mode being defined as a mode during which the flash rate is set to a low flash rate value being lower than the minimum flash rate value and no motion report being reported from the sensing unit to the control unit, wherein the method comprises during the sleep mode the steps of (i) illuminating said surface portion with radiation by means of the light source at the low flash rate value; (ii) detecting a radiation pattern reflected from the illuminated surface portion by means of the photodetector device; (iii) detecting occurrence of a loss-of-tracking event between two successive reflected radiation patterns detected by the photodetector device indicating the user has returned; (iv) increasing the flash rate if an occurrence of the loss-of-tracking event is detected; (v) entering into said motion detection mode.
Abstract:
There is described a method as well as a device for motion detect ion in an optical sensing device, such as an optical mouse. A photodetector array comprising a plurality of pixels is used to detect successive light intensity patterns of an illuminated portion of a surface with respect to which a measurement of relative motion is to be determined. Light intensity between neighbouring pixels is compared in order to determine edge direction data descriptive of light intensity differences between the pixels, such data including (i) a first edge condition, or positive edge, defined as a condition wherein light intensity of a first pixel is less than light intensity of a second pixel, and (ii) a second edge condition, or negative edge, defined as a condition wherein light intensity of the first pixel is greater than light intensity of the second pixel. Through comparison of this edge direction data with edge direction data determined from a previous illumination (or by comparing data extracted from this edge direction data) a measurement of the relative motion of the optical sensing device with respect to the illuminated portion of the surface is determined.
Abstract:
There is described a method for measuring relative motion between an illuminated portion of a surface and an optical sensing device comprising a photodetector array, which includes a plurality of rows and columns of pixels respectively aligned along first and second axes, the method allowing to determine a measurement of the relative motion between the optical sensing device and the illuminated portion of the surface based on a comparison of motion features extracted from light intensity patterns obtained with the photodetector array, wherein said method includes a checking process between two light intensity patterns for discarding erroneous motion features due to the surface design.
Abstract:
There is described an optical sensing device, a method for controlling operation of an optical sensing device comprising a light source for illuminating a surface portion with radiation, a photodetector device having at least one photosensitive element responsive to radiation reflected from the illuminated surface portion, and conversion means for integrating an output signal of said at least one photosensitive element over time during an integration period of variable duration, which duration depends on power of the light source and level of radiation reflected from the illuminated surface portion. The optical sensing device further comprises a regulating system for controlling power if the light source as a function of a comparison between a parameter representative of the evolution of the integration of the output signal of the said at least one photosensitive element and at least one reference value. Regulation is advantageously performed by timing the duration of the integration period or by determining the rate of evolution of the integrated signal, comparing this duration or rate of evolution with at least one reference value and controlling power of the light source as a function of the result of the comparison. There is also described an optical pointing device implementing the above regulation scheme as well as an optical sensing device exploiting this scheme so as to sense proximity of the illuminated surface portion with respect to the optical sensing device.
Abstract:
A parasitically compensated resistor (50) for integrated circuits includes a substrate (52). A polysilicon resistor (54) is formed in the substrate (52). The polysilicon resistor (54) has a first end connected to a first lead (56) and a second end connected to a second lead (58). A conductive layer (62) is capacitively connected to the polysilicon resistor (54).