Abstract:
A method for providing refrigeration, such as to an insulated enclosure for food freezing, wherein a defined hydrocarbon-containing multicomponent refrigerant fluid undergoes a phase change coupled with Joule-Thomson expansion to generate refrigeration over a wide temperature range which may comprise from ambient to low temperatures.
Abstract:
The method of the invention is based on the comparison of local vapor concentrations at the inlet and outlet refrigeration ports and taking action based on that comparison. Control apparatus incorporating the invention is installed inside a refrigeration enclosure, adjacent to a port, preferably at the lowermost port. If the enclosure contains multiple ports at similar height, then each port has a form of the control apparatus attached to it. The control apparatus adjusts a flow of vapor leaving the interior of the enclosure. The control apparatus includes a duct assembly and a blower system. The bottom portion of the duct assembly is a tunnel enclosure through which a conveyor belt passes. Connected to an inside edge of the tunnel enclosure is a duct that extends upward from the conveyor belt. A blower for this duct either sucks vapor away from the conveyor belt or blows vapor from the enclosure interior toward the belt. Regardless of the flow direction, a vapor curtain forms inside the tunnel enclosure and represents a transitional region from all vapor to all air. Control of the blower for the duct assembly is based on vapor concentrations in the tunnel enclosures adjacent to each port. A microprocessor compares measured concentration levels and alters the blower motor frequency in such a manner as to minimize the difference in concentration levels at each port.
Abstract:
Refrigeration apparatus for cooling or freezing products such as protein materials includes a drum through which heat transfer fluid is circulated. A belt is wrapped around part of the drum surface and the product to be refrigerated is applied to the drum surface, being pressed thereagainst by the belt. Either liquid or triple point carbon dioxide is circulated through the drum to cool the product in contact therewith. Other heat transfer fluids such as D-Limonene or DOWTHERM may also be circulated through the drum. A tank and related apparatus for cooling the heat transfer fluid is also disclosed.
Abstract:
Disclosed are methods and apparatus for forming frozen food products, especially frozen foamed food products wherein the products contain bubbles having a reduced average size preferably in a narrow size range or contain ice crystals having reduced size.
Abstract:
A tunnel freezer uses carbon dioxide snow to directly contact product carried on a conveyor belt passing through the freezer. Fans are provided above and below the upper conveyor belt run carrying the product, with the fans above and below having downwardly directed exhaust. Trough-shaped deflector plates are provided adjacent the lower fans to circulate a flow adjacent the underneath surface of the upper conveyor belt run. Preferably, circulation adjacent the upper conveyor belt run is generally parallel to the upper conveyor belt run, and turning vanes are provided to deflect the flow upwardly through the upper conveyor belt run. Freezers may be provided with one or more cooling zones arranged in series along the path of conveyor belt travel.
Abstract:
Combined cryogenic and mechanical refrigeration freezer utilizing an open spiral conveyor for transporting food to be frozen through a first cryogenic zone enclosed by a secondary housing and then through a mechanically refrigerated zone subjected to circulating air cooled by mechanical refrigeration and cryogenic vapor from the first cryogenic zone.
Abstract:
A food freezer having a mechanical refrigeration system comprising first and second closed-loop fluid circuits, wherein the first fluid circuit employs carbon dioxide as its refrigerant and transfers heat to the second fluid circuit, which in turn transfers heat to the environment or to another fluid circuit. In the first fluid circuit evaporator, carbon dioxide is maintained at pressures between 60.4 psig and 120 psig. In a preferred embodiment of the invention, the freezer employs at least two separate blowers or fans for circulation of air or other gas in the freezer enclosure. One blower/fan operates continuously to maintain circulation of cold air or gas in the freezer. The other blower/fan operates intermittently or at variable speeds to vary air flow across the evaporator, and thereby increase or decrease heat transfer from the freezer interior to the first fluid circuit evaporator to maintain the freezer interior at a desired temperature or within a desired temperature range.
Abstract:
Disclosed are methods and apparatus for forming frozen food products, especially frozen foamed food products wherein the products contain bubbles having a reduced average size preferably in a narrow size range or contain ice crystals having reduced size.
Abstract:
Methods and apparatus for contact freezing a food product. A conveyor belt or other support may have an active region that supports materials on an outer surface. Liquid cryogen may be provided in bulk contact with an inner surface of the active region via splashing, agitation, pumping, gravity feed, and the like.
Abstract:
A chiller or tunnel freezer for rapid chilling of chicken carcasses and the like wherein a cryogen such as liquid nitrogen or carbon dioxide snow is sprayed directly on the carcasses or other items as they travel through a passage or tunnel, and wherein vortical flow of air and/or vaporized cryogen is effected within the chiller to continuously sweep the bottom surface of the chiller and recirculate cryogen from the bottom surface, thereby avoiding accumulation of liquid nitrogen or CO.sub.2 snow on the bottom surface. The vortical flow is preferably provided by one or more fans disposed within the tunnel. A deflector may be provided on the tunnel interior to direct recirculated cryogen onto the items being chilled. A damper may be provided to regulate fan output and thereby enable optimization of operational efficiency.