摘要:
A method for dual telemetry noise reduction on a drilling rig comprises receiving an acoustic signal including first telemetry data transmitted over a drill string of the drilling rig. A pressure signal is received including the first telemetry data transmitted through drilling mud of the drill string of the drilling rig. The pressure signal is substantially similar to the acoustic signal and offset from the acoustic signal by a first period of time. The telemetry data is determined and the noise contained within the acoustic signal and the pressure signal rejected responsive to both the received acoustic signal and the received pressure signal.
摘要:
A system for making bottom hole assembly (BHA) measurements in the bottom hole assembly (BHA) includes a vibration mechanism configured to use mechanical energy provided by a mechanical energy source to produce a plurality of vibration beats at the BHA. At least one vibration sensor detects the plurality of vibration beats generated by the vibration mechanism. A controller generates a waveform responsive to the detected plurality of vibration beats. The waveform is generated in a first configuration when the BHA has a first weight on bit (WOB) or revolutions per minute (RPM) measurement based on the detected plurality of vibration beats and the waveform is generated in a second configuration when the BHA has a second WOB or RPM measurement based on the detected plurality of vibration beats.
摘要:
A method includes receiving toolface information corresponding to a location of the bottom hole assembly (BHA) with respect to a target drilling path and drift information. The surface steerable system calculates a first toolface vector from a first location of the BHA to the target drilling path to create a convergence path to the target drilling path and calculates an adjustment of the first toolface vector to a second toolface vector to account for system drift defined by the drift information such that the BHA will converge with the target drilling path by drilling in accordance with the second toolface vector. The surface steerable system modifies at least one drilling parameter to alter a drilling direction of the BHA based on the calculated second toolface vector and transmits the at least one drilling parameter to the drilling rig to target the BHA in accordance with the second toolface vector.
摘要:
Provided are a system and method for calculating and selecting a convergence path based on cost. In one example, the method includes identifying multiple geometric convergence paths that each provides a convergence solution from a defined bottom hole assembly (BHA) location to a target path. A total monetary cost is calculated for each of the geometric convergence paths using an offset cost based on a distance of the geometric convergence path from the target path, a curvature cost based on an amount of curvature of the geometric convergence path, and a time cost based on an estimated amount of time needed to drill the geometric convergence path. The total monetary costs of the geometric convergence paths are compared and one of the geometric convergence paths is selected based on the total monetary cost of that geometric convergence path relative to the total monetary costs of the other geometric convergence paths.
摘要:
A system is provided for communicating within a borehole using controlled vibrations. A movement mechanism uses mechanical energy provided by a mechanical energy source to enable translational movement of a first surface relative to a second surface to allow the first surface to repeatedly impact the second surface to produce a plurality of vibration beats. The vibration beats will occur whenever the mechanical energy is provided by the mechanical energy source at one of at least three impact levels. A vibration control mechanism selectively controls an amplitude of the plurality of vibration beats to encode information therein. The amplitude of a vibration beat is selectively controlled by regulating the impact of the first surface and the second surface to one of the at least three impact levels.
摘要:
Provided are a system and method for identifying planned markers while drilling a borehole. In one example, the method includes obtaining a plan containing planned markers that each corresponds to a baseline marker from an existing well. Each of the baseline markers corresponds to a waveform from a log file obtained from the existing well and is associated with a waveform representation of the corresponding waveform. Each of the planned markers is associated with an estimated true vertical depth (TVD) value. A second log file corresponding to the borehole is obtained that contains waveforms representing formation information detected within the borehole. The second log file is scanned for a planned marker based on the estimated TVD value and the waveform representation of the baseline marker corresponding to the planned marker. At least one match may be identified and reported for the planned marker.
摘要:
A system is provided for communicating within a borehole using controlled vibrations. A movement mechanism uses mechanical energy provided by a mechanical energy source to enable translational movement of a first surface relative to a second surface to allow the first surface to repeatedly impact the second surface to produce a plurality of vibration beats. The vibration beats will occur whenever the mechanical energy is provided by the mechanical energy source at one of at least three impact levels. A vibration control mechanism selectively controls an amplitude of the plurality of vibration beats to encode information therein. The amplitude of a vibration beat is selectively controlled by regulating the impact of the first surface and the second surface to one of the at least three impact levels.
摘要:
A system and method for surface steerable drilling are provided. In one example, the method includes monitoring operating parameters for drilling rig equipment and bottom hole assembly (BHA) equipment for a BHA, where the operating parameters control the drilling rig equipment and BHA equipment. The method includes receiving current inputs corresponding to performance data of the drilling rig equipment and BHA equipment during a drilling operation and determining that an amount of change between the current inputs and corresponding previously received inputs exceeds a defined threshold. The method further includes determining whether a modification to the operating parameters has occurred that would result in the amount of change exceeding the defined threshold and identifying that a problem exists in at least one of the drilling rig equipment and BHA equipment if no modification has occurred to the operating parameters. The method includes performing a defined action if a problem exists.
摘要:
A system and method are provided for producing controlled vibrations within a borehole. In one example, the system includes a movement mechanism and a vibration control mechanism. The movement mechanism is configured to use mechanical energy provided by a mechanical energy source to enable translational movement of a first surface relative to a second surface to allow the first surface to repeatedly impact the second surface to produce a plurality of vibration beats, where the vibration beats will occur whenever the mechanical energy is provided by the mechanical energy source unless the provided mechanical energy is dampened to prevent the translational movement. The vibration control mechanism is configured to selectively control an amplitude of the vibration beats to encode information therein, where the amplitude of a vibration beat is selectively controlled by dampening the provided mechanical energy to regulate the impact of the first surface and the second surface.