Abstract:
This invention relates to agents that bind multiple Siglecs, including antibodies that neutralize the inhibitory activity of multiple Siglec-7 and Siglec-9 in lymphocytes. Such agents can be used for the treatment of cancers or infectious disease.
Abstract:
The present invention relates to methods for the treatment of disease, notably cancer, using antibodies that specifically bind and inhibit human NKG2A. Included are therapeutic regimens that provide improved efficacy of anti-NKG2A antibodies.
Abstract:
The present invention relates to agents and methods that are capable of augmenting NK-mediated killing of target cells by reducing inhibitory KIR signalling without reducing the binding of KIR to HLA-C. As described herein, transduction of negative signaling via KIR, upon binding of KIR to its HLA class I ligand, can involve a ligand-binding induced, conformational reorientation of the KIR molecules allowing interactions to form between adjacent KIRs in specific domains, leading to accelerated clustering. Methods and agents such as monoclonal antibodies for reducing KIR-mediated inhibition of NK cell cytotoxicity without reducing or blocking HLA-binding by, e.g., reducing or blocking dimerization of KIR, are provided.
Abstract:
Multispecific proteins that bind and specifically redirect NK cells to lyse a target cell of interest are provided without non-specific activation of NK cells in absence of target cells. The proteins have utility in the treatment of disease, notably cancer or infectious disease.
Abstract:
The present invention relates to agents and methods that are capable of augmenting NK-mediated killing of target cells by reducing inhibitory KIR signalling without reducing the binding of KIR to HLA-C. As described herein, transduction of negative signaling via KIR, upon binding of KIR to its HLA class I ligand, can involve a ligand-binding induced, conformational reorientation of the KIR molecules allowing interactions to form between adjacent KIRs in specific domains, leading to accelerated clustering. Methods and agents such as monoclonal antibodies for reducing KIR-mediated inhibition of NK cell cytotoxicity without reducing or blocking HLA-binding by, e.g., reducing or blocking dimerization of KIR, are provided.
Abstract:
The present invention relates, generally, to methods and compositions for increasing the efficiency of therapeutic antibodies. Their efficiency is enhanced through the increase of the ADCC mechanism. More particularly, the invention relates to the use of a therapeutic antibody in combination with compounds that block an inhibitory receptor or stimulate an activating receptor of an NK cell in order to enhance the efficiency of the treatment with therapeutic antibodies in human subjects.
Abstract:
The present invention relates to a method of predicting or monitoring the sensitivity of a subject having a tumor to a chemotherapy, to a method of selecting an appropriate chemotherapeutic treatment of cancer, to a method of screening or identifying a compound suitable for improving the treatment of a cancer, and to corresponding kits. The method of predicting or monitoring the sensitivity of a subject having a tumor to a chemotherapy typically comprises a step a) of determining, in a biological sample from said subject, the presence, absence or expression level of at least one of a soluble B7H6 (sB7H6 or sB7-H6) and a soluble MIC (sMIC) and when the expression level is determined a step b) of comparing said expression level to a reference expression level, thereby assessing or monitoring whether the subject having a tumor is responsive or resistant to the chemotherapy.
Abstract:
The present invention relates to methods for the treatment of cancer and inflammatory disease using antibodies (e.g. monoclonal antibodies), antibody fragments, and derivatives thereof that specifically bind KIR3DL2. The invention also relates to antibodies, cells producing such antibodies; methods of making such antibodies; fragments, variants, and derivatives of the antibodies; pharmaceutical compositions comprising the same.
Abstract:
The present invention relates to methods of treating immune disorders, particularly autoimmune or inflammatory disorders, and methods of producing antibodies and other compounds for use in therapeutic strategies for treating such disorders. Generally, the present methods involve the use of antibodies or other compounds that prevent the stimulation of NKG2A receptors on NK cells, leading to the lysis of dendritic cells that contribute to the pathology of the disorders.
Abstract:
Described are methods of treating viral disease using compounds that block inhibitory NK cell receptors, thereby reducing their inhibition of NK cell cytotoxicity in killing infected target cells. In one embodiment, the compound is an antibody binding, for example, one or more of the human KIR2DL1, KIR2DL2, and KIR2DL3 receptors. In another embodiment, the method further comprises administering a therapeutic antibody or fusion protein which binds an antigen expressed on cells infected with the virus.