Abstract:
Preparing a three dimensional (3D) video graphical overlay based on a two dimensional (2D) graphical image in a decoded stereoscopic video signal. This includes receiving the 2D graphical image and receiving 3D information associated with the 3D video graphical overlay. This also includes reproducing, using a processor, the 2D graphical image to form a first view graphical image and a second view graphical image in a graphics window. This also includes mapping the first and second view graphical images, using the 3D information, to frames in the 3D video to form a 3D video graphical overlay of a 3D video stream. This also includes blending the 3D video graphical overlay and the 3D video stream.
Abstract:
In a network system based on a content name, a terminal device may generate and transmit a block query requesting a plurality of segments, and may receive segments corresponding to the block query based on a transmission direction of the block query.
Abstract:
A method for assigning a global address to a node in an ad-hoc network is provided. A joining node to the ad-hoc network generates a local address using its MAC address. The joining node inquires of its one-hop nodes about whether they occupy a local address that is the same as the generated local address. When the joining node is informed that there are no nodes occupying the same local address, it generates a global address using the generated local address and a global prefix provided from neighbor nodes. The joining node inquires of an Internet gateway about whether the generated global address is currently used. When the joining node is informed that there are no nodes currently using the same global address, the joining node is assigned the generated global address. Further, the joining node and the Internet gateway communicate messages via a relay node using a tunneling.
Abstract:
A method and apparatus for scheduling in a Wireless Local Area Network (WLAN) mesh communication system including a plurality of Mesh Access Points (MAPs) are provided, in which, when a message to be transmitted from a first MAP of the MAPs to MAPs adjacent to first MAP is generated, setting a first interval for transmitting the generated message during a predetermined period, and setting a remaining interval excluding the first interval during the predetermined period as a second interval for receiving messages from the adjacent MAPs.
Abstract:
Provided is a device for sampling and pretreating biological fluid. It comprises: a piercing unit having at a lower portion a capillary tip which is to be inserted into skin to a predetermined depth to take biological fluid therethrough; a dropper, connected to an upper portion of the piercing unit, having an injection tube at an upper portion thereof, the injection tube communicating with the capillary tip; and a reagent container, designed to accommodate the piercing unit therein in an airtight manner so as to seal an outer circumference of the piercing unit, functioning to contain a reagent for treating the biological fluid of the capillary tip of the piercing unit. The device allows even a novice to sample and pre treat biological fluid with high accuracy without the use of expensive precision devices. The device employs fewer expendable supplies, thus providing higher convenience for the user.
Abstract:
A method of forming a flash memory device in a memory cell region of a substrate includes forming a first insulating layer on the substrate, forming a first conductive layer on the first insulating layer, forming trench isolation regions in the substrate extending through the first conductive layer and the first insulating layer to define an active region in the memory cell region between the trench isolation regions, and selectively removing the first conductive layer and the first insulating layer from the memory cell region of the substrate to expose a surface of the active region between the trench isolation regions.
Abstract:
A liquid crystal display device and a method for manufacturing the same are disclosed. In an embodiment of the present invention, a liquid crystal display device and a method of manufacturing the liquid crystal display device includes a first substrate that has a first electrode formed thereon, a second substrate that faces the first substrate, a liquid crystal layer that is formed between the first substrate and the second substrate, and a first alignment layer that is formed on the first substrate and is in contact with the liquid crystal layer. Here, the first alignment layer includes a first alignment base layer that is photoaligned, and a first alignment controlling layer that is extended from the inside of the first alignment base layer.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present invention includes: a substrate; a partition formed on the substrate and defining a pixel; a plurality of protrusion members formed with the same material as the partition on the substrate, and disposed with a linear plane shape inside the pixel defined by the partition; and a color filter filled inside the pixel defined by the partition. Accordingly, in the liquid crystal display according to an exemplary embodiment of the present invention, a plurality of transparent protrusion members are formed in the pixel defined by the partition such that movement of color filter ink dripped through an Inkjet method is controlled such that a color filter may be planarized on the whole surface of the pixel.
Abstract:
A display panel includes a substrate, a partition formed on the substrate and defining a plurality of openings, a plurality of color filters formed in the openings and having a substantially uniform thickness within each respective opening, and a spacer formed on the partition. The color filters and the spacer are formed through inkjet printing. The color filters have the substantially uniform thickness by the partition having a height which is greater than the thickness of the color filters during the inkjet printing. The height of the partition may be in a range of about 1.5 to about 2 times the thickness of the color filter.
Abstract:
Provided are a method and system for determining a precise orbit of a LEO satellite. The method includes: estimating a precise ephemeris of a global positioning system (GPS) satellite by fitting an orbit perturbation-based GPS dynamics model to observation data of the GPS satellite received from a GPS observatory and estimating a precise ephemeris of a Galileo satellite by fitting an orbit perturbation-based Galileo dynamics model to observation data of the Galileo satellite received from a Galileo observatory; determining an initial orbit value of a LEO satellite by fitting an orbit perturbation-based LEO satellite's basic dynamics model to navigation data received from the LEO satellite; and determining the precise orbit of the LEO satellite by calculating a difference between observation values, which are calculated based on a GPS and Galileo data received from the LEO satellite, the GPS observatory and the Galileo observatory, and calculated values, which are calculated based on an orbit perturbation-based LEO satellite's dynamics model that was calculated using the initial orbit value of the LEO satellite and the precise ephemeris of the GPS and Galileo satellites. Since both the GPS and Galileo data are received and used to determine the precise orbit of a LEO satellite, more precise orbit determination can be achieved.