Abstract:
Photographic elements, diffusion transfer assemblages and coordination complexes are described which employ a novel nondiffusible compound capable of releasing at least one diffusible dye moiety having the formula: ##STR1## wherein: (a) D.sup.1, D.sup.2 and D.sup.3 each independently represents the atoms necessary to complete an aromatic heterocyclic nucleus having at least one ring of 5 to 7 atoms;(b) Z.sup.1 and Z.sup.2 each independently represents the atoms necessary to complete an aromatic carbocyclic or heterocyclic nucleus having at least one ring of 5 to 7 atoms or a ketomethine group;(c) G.sup.1 and G.sup.2 each independently represents a metal chelating group;(d) Me is a polyvalent, hexacoordinate metal ion,(e) CAR represents a ballasted carrier moiety capable of releasing the diffusible dye moiety as a function of development of the silver halide emulsion layer under alkaline conditions; and(f) n is 1, 2 or 3.
Abstract:
A process for obtaining highly stable color photographic images utilizes a silver halide photographic element comprising an essentially colorless, immobile compound which is capable of complexing with ferrous ions to form a dye. The complexing compound contains a complexing moiety which is represented by the formula: ##STR1## wherein m is zero or a positive integer 1 to 3, n and p are independently 0 or 1 and represents a single or double bond. Z is R.sup.1 --N.dbd., O.dbd., S.dbd., R.sup.1 --P.dbd., (R.sup.1).sub.2 P-- or (R.sup.1).sub.3 P.dbd., and when Z is (R.sup.1).sub.2 P--, n is 1, otherwise n is 0. R.sup.1, R.sup.2, R.sup.3, R.sup.4, R.sup.5 and R.sup.6 are independently hydrogen, amino, hydroxy, mercapto, alkoxy, alkyl, aryl or a heterocyclic moiety. When R.sup.6 is so defined, p is 1 and is a single bond. If m is 0, R.sup.1 and R.sup.2, R.sup.2 and R.sup.3, and R.sup.3 and R.sup.4 taken together can independently represent the carbon and heteroatoms necessary to complete a substituted or unsubstituted carbocyclic or heterocyclic nucleus, or if m is 1 to 3, R.sup.1 and R.sup.2, R.sup.5 and R.sup.6, and R.sup.3 and R.sup.4 can independently represent the carbon and heteroatoms necessary to complete a substituted or unsubstituted heterocyclic nucleus. When R.sup.5 and R.sup.6 are so defined, p is 0 when is a double bond, and p is 1 when is a single bond.
Abstract:
Photographic elements, diffusion transfer assemblages, coordination complexes and processes are described which employ a novel nondiffusible compound capable of releasing at least one diffusible cyan dye moiety comprising a 6-heterocyclylazo-3-pyridinol, the compound having the formula: ##STR1## wherein: (a) Y represents the atoms necessary to complete a 5- or 6-membered aromatic heterocyclic fused ring;(b) CAR represents a ballasted carrier moiety capable of releasing the diffusible cyan dye moiety as a function of development of a silver halide emulsion layer under alkaline conditions;(c) R represents a hydroxy group, a salt thereof, or a hydrolyzable precursor thereof, or CAR which is linked to the dye moiety through an oxygen atom thereon; and(d) n is 0, 1 or 2 with the proviso that when n is 0, then R is CAR which is linked to the dye moiety through an oxygen atom thereon.
Abstract:
A method for automatically compensating for scanner metamerism errors associated with scanning input images using a digital color image scanner, wherein the input images can be on a variety of different input media having colorants with different spectral characteristics, comprising scanning an input image on a digital color image scanner to produce a scanned image; determining one or more estimated color balance error values in a color balance parameter space by analyzing the scanned image using a color balance analysis algorithm; assigning an input medium from a set of possible input media for the scanned input image in response to the estimated color balance error values; selecting a scanner metamerism correction color transform associated with the assigned input medium; and applying the selected scanner metamerism correction color transform to the scanned image to produce a corrected image compensated for scanner metamerism errors.
Abstract:
A recording element printing and treating system and method are provided. The system includes a printhead for dispensing a liquid comprising a carrier onto a recording element. A carrier removal station positioned downstream from the printhead removes a predetermined percentage of carrier present in the recording element. A converting station positioned downstream from the carrier removal station increases a durability characteristic of the recording element. In one embodiment, printing, carrier removal, and converting are accomplished in a single unit. In an alternative embodiment, printing is accomplished in a stand alone unit while carrier removal and converting are accomplished in a second stand alone unit. In this alternative embodiment, transfer of the recording element can be accomplished automatically using a mechanical device or manually by a system user.
Abstract:
A method of selecting inks within an inkjet ink set for color printing includes: a) providing at least two color inks, each ink having a carrier and a pigment; b) printing the above inks onto a receiver using test images consisting of single color patches of a Dmax density (100% dot coverage); c) measuring the gloss level of each patch at a predefined specular angle; d) calculating the Relative Gloss Variability (RGV) values of the ink set based on the definition in Equation A; and e) selecting inks for the color set such that the Relative Gloss Variability (RGV) among inks is less than 10% when 60° is used as the specular angle: RGV ( % ) = ∑ I = 1 N | ( Gloss ( Imaged Area ) I - AG ) | AG / N Equation ( A ) Where AG = ∑ I = 1 N Gloss ( Imaged Area ) I N I is a variable which identifies a certain color patch used in the evaluation, N is the total number of color patches used in the evaluation.
Abstract:
An ink jet printing process for improving the ozone stability an ink jet image comprising: a) providing an ink jet recording element comprising a support having thereon a porous image-receiving layer having interconnecting voids; and b) applying droplets of a liquid ink on the image-receiving layer in an image-wise manner, the ink comprising water, humectant and a metallized, phthalocyanine dye, the metallized, phthalocyanine dye comprising the formula: MPc(SO3X)a(SO2NRR′)b.
Abstract:
Photographic elements and diffusion transfer assemblages are described which contain a novel mordant comprising a polymeric backbone having appended thereto nitrogen-coordinating ligands having the formula: ##STR1## wherein D.sup.1, D.sup.2, D.sup.3 each independently represents the atoms necessary to complete an aromatic heterocyclic nucleus having at least one ring of 5 to 7 atoms.In a preferred embodiment, the mordant comprises recurring units having the formula: ##STR2## wherein: R.sup.1 and R.sup.2 each independently represents hydrogen or an alkyl or substituted alkyl group having from 1 to about 6 carbon atoms;Link represents a bivalent linking group; andLIG represents a nitrogen-coordinating ligand as described above.
Abstract:
A process of obtaining highly stable color images comprises use of an element which has a support having thereon at least one silver halide emulsion layer having associated therewith an essentially colorless, immobile, ligand-releasing compound of the structure LIG-X. In this structure, LIG is a ligand which is capable of complexing with metal ions (e.g. ferrous ions) to form a metal complex dye, and X is a group which, as a function of silver halide development, is cleaved from LIG. A color image is formed by developing the described element after imagewise exposure with a developing agent to imagewise cleave the bond between the LIG and X, and treating the developed element with metal ions (e.g. ferrous ions) to form a metal complex dye image.
Abstract:
Nondiffusible compounds capable of releasing at least one diffusible cyan dye moiety having the formula: ##STR1## wherein: (a) Y represents the atoms necessary to complete a 5- or 6-membered aromatic heterocyclic fused ring;(b) CAR represents a ballasted carrier moiety capable of releasing the diffusible cyan dye moiety as a function of development of a silver halide emulsion layer under alkaline conditions;(c) R represents a hydroxy group, a salt thereof, or a hydrolyzable precursor thereof, or CAR which is linked to the dye moiety through an oxygen atom thereon; and(d) n is 0, 1 or 2 with the proviso that when n is 0, then R is CAR which is linked to the dye moiety through an oxygen atom thereon.