Abstract:
A limiting factor in the operation of EUV lithographic devices is the lifetime or the reflectivity of the reflective optics that is reduced by contamination with carbon-containing substances. Protective coatings that are resistant to oxidation or are inert against water are already known.According to the invention it is proposed to deposit protective coatings on, for example, multilayers that suppress the growth of carbon-containing substances in combination with layers that are inert against residual gas atmosphere and energy input. Even with a long operating time a high reflectivity is thereby retained.The protective coatings may be deposited by electron-beam vaporization, magnetron- or ion-beam sputtering.
Abstract:
A reflective optical element and an EUV lithography appliance containing one such element are provided, the appliance displaying a low propensity to contamination. According to the invention, the reflective optical element has a protective layer system consisting of at least one layer. The optical characteristics of the protective layer system are between those of a spacer and an absorber, or correspond to those of a spacer. The selection of a material with the smallest possible imaginary part and a real part which is as close to 1 as possible in terms of the refractive index leads to a plateau-type reflectivity course according to the thickness of the protective layer system between two thicknesses d1 and d2. The thickness of the protective layer system is selected in such a way that it is less than d2.
Abstract:
A cleaning system for removing contamination from at least a part of a surface of a component in a lithographic projection apparatus is disclosed. The cleaning system includes an electric field generator that generates an electric field to provide cleaning particles near the surface of the component.