Abstract:
A method of processing image data from an imaging system for locating a plurality N of objects embedded in a body includes receiving data for a first two-dimensional image of a region of interest of the body containing the plurality N of objects, the first two-dimensional image being obtained from a first imaging setting of the imaging system relative to the region of interest; receiving data for a second two-dimensional image of a region of interest of the body containing the plurality N of objects, the second two-dimensional image being obtained from a second imaging setting of the imaging system relative to the region of interest; and receiving data for a third two-dimensional image of a region of interest of the body containing the plurality N of objects, the third two-dimensional image being obtained from a third imaging setting of said imaging system relative to said region of interest.
Abstract:
In the WAP data extraction method of the present invention, all of the data packets passing through a WAP gateway are captured. Primary filtering is performed by determining whether each of the captured data packets uses the IP address of the given WAP gateway as an intermediate IP address, or has a port corresponding to a WAP protocol. Whether a Mobile Identification Number (MIN) is present in a header of data filtered in the primary filtering is determined. Whether the MIN is identical to a registered MIN is determined if a MIN is determined to be present. An IP address or a port number included in the header is registered, while the data packet is stored if the MIN is determined to be identical to the registered MIN. Secondary filtering is performed on the data packet having the IP address or the port number, and data filtered through the secondary filtering is stored.
Abstract:
An optical film and a backlight unit having the same are disclosed. The optical film includes a base film and a first prism disposed on the base film, the first prism having a first peak height and a second prism disposed on the base film, the second prism having a second peak height. A difference between the first peak height and the second peak height is substantially 1 μm to 10 μm.
Abstract:
A method for mitigating traffic congestions in a communication network uses concatenated data packets to transmit information between terminals, e.g., edge proxies, of the network. Embodiments of the invention are directed to packet communications over military or commercial networks. In one application, the method is implemented in a network using High Assurance Internet Protocol Encryption (HAIPE).
Abstract:
An optical sheet and a liquid crystal display including the same are disclosed. The optical sheet includes a reflective polarizing film, a first adhesive layer on one surface of the reflective polarizing film, and a first diffusion layer on the first adhesive layer. The first adhesive layer has first and second thicknesses. The first diffusion layer includes a first light transmitting material and a plurality of first diffusion particles. At least one of the first diffusion particles has a portion protruding above a surface of the first light transmitting material, and a height of the portion, h1, substantially satisfies the following equation: 0.1D1≦h1≦0.7D1, where D1 is a diameter of the at least one of the first diffusion particles. The first thickness, T1, and the second thickness, T2, substantially satisfy the following equation: 10 nm≦|T1−T2|≦2 μm.
Abstract:
An optical sheet, a backlight unit including the optical sheet and a liquid crystal display including the backlight unit are disclosed. The optical sheet includes a reflective polarizing film, and a first diffusing layer on the reflective polarizing film. The first diffusing layer includes a plurality of first diffusion particles. The first diffusion particles have a volume distribution as a function of diameter. For a diameter D of a first diffusion particle corresponding to a maximum value of the volume distribution, a summation of volumes of a portion of the first diffusion particles having diameters between D−2 μm and D+2 μm is about 40% to 80% of a total volume of the first diffusion particles.
Abstract:
The present invention is directed to a multilayer film. The present invention is also directed to a backlight unit and a liquid crystal display into which the multilayer film is incorporated. The backlight unit comprises a light source; and a multilayer film disposed adjacent to the light source, wherein the multilayer film comprises a first layer including a plurality of first particles and at least one second layer including a plurality of second particles, and wherein the second layer is disposed adjacent to the first layer and has a refractive index different from the first layer. The liquid crystal display comprises a liquid crystal panel; a light source; and a multilayer film disposed adjacent to the light source, wherein the multilayer film comprises a first layer including a plurality of first particles and at least one second layer including a plurality of second particles, and wherein the second layer is disposed adjacent to the first layer and has a refractive index different from the first layer.
Abstract:
An optical sheet is disclosed. The optical sheet includes a base film, a prism unit on the base film, an adhesive layer on the prism unit, and a first protective film on the adhesive layer. The prism unit is buried into the adhesive layer.
Abstract:
An optical film and a liquid crystal display including the optical film are disclosed. The optical film includes a reflective polarizing film, a first primer layer on the reflective polarizing film, and a first projection on the first primer layer.
Abstract:
The present invention relates to an apparatus and method for measuring surface tension. More particularly, the present invention relates an apparatus and method for measuring surface tension through an electrical scheme which is simpler and has improved accuracy compared to a conventional optical scheme.