Abstract:
A time-triggered Ethernet (TTE)-based data transmission method and node device, solving the problem of wasting network bandwidth resources in the prior art during TTE-based data transmission; in the method, a main node determines a scheduling period table based on a time-triggered packet; when a node has a to-be-transmitted event-triggered packet, and the node determines, according to the information stored in the scheduling period table, that a physical link occupied by the event-triggered packet is not in conflict with a physical link corresponding to the current time slot, the node transmits the event-triggered packet in the current time slot. The main node does not need to separately allocate time for the event-triggered packet of each node. Therefore, when a node has a to-be-transmitted event-triggered packet, the node can transmit the event-triggered packet in the current time slot as long as the physical link occupied by the event-triggered packet is not in conflict with the physical link corresponding to the current time slot, thus effectively improving data transmission efficiency and network bandwidth utilization.
Abstract:
The present disclosure provides a method and apparatus for managing a field device based on a cloud server. The method includes: obtaining, by a client, a list of devices from the cloud server, and selecting a target device to be managed from the list of devices; generating, by the client, a corresponding virtual device driver according to device information of the target device and configuring a driver parameter of the virtual device driver, and sending the driver parameter to an access server via the cloud server to trigger the access server to configure an interface of the target device according to the driver parameter; and determining, by the client, to establish a communication channel between the client and the target device upon reception of a configuration success message returned from the access server, and managing the target device according to the communication channel.
Abstract:
Provided is a microkernel architecture control system of an industrial server and an industrial server, which relate to the technical field of industrial servers. According to the microkernel architecture control system, scheduling configuration information is customized on the basis of an architecture including a plurality of microkernels and a virtual machine monitor prior to startup of a system, each microkernel including industrial control middleware and a real-time operating system.
Abstract:
The disclosure relates to a method and apparatus for real-time transmission in a field broadband bus architecture over an industrial internet, where the field broadband bus architecture over an industrial internet includes: a bus controller, at least one bus terminal, and a two-wire bus over which the bus controller and the bus terminal are connected to constitute a network, the bus controller communicates with any one bus terminal, and the respective bus terminals communicate with each other, using the Orthogonal Frequency Division Multiplexing technology, and sub-carriers occupied by the respective bus terminals do not interfere with each other; and the method includes: the bus controller receives a fixed-rate service transmitted by the bus terminal in an uplink subframe over pre-allocated fixed-rate service resource blocks; and allocates resource blocks for a variable-rate service of the bus terminal in a real-time manner among variable-rate service resource blocks.
Abstract:
Disclosed is a heterogeneous field devices control management system based on an industrial internet operating system. In order to solve the problems that it is difficult to add new heterogeneous field devices to an existing system, as well as that the system has low security and a real-time performance, on one hand, according to embodiments of the present disclosure, on the basis of the differences of real-time requirements of services operated by heterogeneous field devices, a real-time virtual machine processes a real-time service and a non-real-time virtual machine processes a non-real-time service, thus different operating environments could be customized for a real-time service and a non-real-time service, avoiding the situation that when a system upgrade is made for a non-real-time service or a non-real-time virtual service fails, a real-time service is also affected, service isolation is realized, and, stability and reliability of industrial field control are enhanced.
Abstract:
Embodiments of the disclosure disclose a synchronization method and apparatus on the basis of a field broadband bus architecture of an industrial Internet, where the bus architecture includes a bus controller, at least one bus terminal, and a two-wire bus, and the bus controller and the bus terminal are connected over the two-wire bus to constitute a bus system, the bus system communicating using OFDM technology; and in the method, all the bus terminals refer to the bus controller, and when receiving a signal, and transmitting a signal, they adjust a clock for a received signal, and a signal to be transmitted, adaptively according to the downlink pilot signal so as to synchronize their clocks and symbols with the bus controller, and adjust a transmission time for the signal to be transmitted so that all the devices in the bus system are synchronized.
Abstract:
The disclosure relates to a method and apparatus for real-time transmission in a field broadband bus architecture over an industrial internet, where the field broadband bus architecture over an industrial internet includes: a bus controller, at least one bus terminal, and a two-wire bus over which the bus controller and the bus terminal are connect to constitute a network, the bus controller communicates with any one bus terminal, and the respective bus terminals communicate with each other, using the OFDM technology, and sub-carriers occupied by the respective bus terminals do not interfere with each other; and the method includes: the bus controller receives a fixed-rate service transmitted by the bus terminal in an uplink subframe over pre-allocated fixed-rate service resource blocks; and allocates resource blocks for a variable-rate service of the bus terminal in a real-time manner among variable-rate service resource blocks.
Abstract:
The application relates to an intelligent traffic cloud control system configured to acquire and centrally analyze a large amount of field data in a traffic system, and to control the traffic system. Unlike a traditional traffic directing and controlling system in such an operating mode that data are acquired and transmitted respectively by different sensing devices, and then collected, analyzed, and processed by a central system, the intelligent traffic cloud control system according to the invention analyzes and processes centrally a large amount of data through field control servers communicating over IP address based broadband buses, and performs adaptive traffic control, traffic regulation enforcement, position tracking, coordinated control, and other service functions through integrating edge computing and cloud computing at a plurality of adjacent field control servers.
Abstract:
The disclosure relates to a data transferring method based on a protection and control system for an intelligent substation. Merging unit and intelligent terminal integrated devices for all bays in an intelligent substation are respectively accessed to corresponding transport ports of an FPGA access chip of an intelligent power server. The method includes: in a reception period, messages are read from a reception buffer clip by a real-time business central processor, subjected to a process and then written into the reception buffer clip; in a transmission period, the real-time business central processor issues indication information to the FPGA access chip, causing the chip to generate messages according to the indication information and write the messages into a transmission buffer.
Abstract:
The invention relates to an industry internet field broadband bus architecture system based on the two-wire data transmission network widely used in the traditional industry control system, so that the system can provide high-performance Ethernet communication without modifying original wiring and topologies, thus providing a high-performance, highly reliable, highly real-time, and highly secured solution to switching an industry control system field layer network from a traditional field bus to an industry Ethernet bus.