Abstract:
A disk drive includes a disk and a head stack assembly. The head stack assembly includes an actuator arm assembly that includes first and second stamped actuator arms. The first stamped actuator arm may include a first arm portion, a first body portion and a coil-supporting portion for supporting a coil of a VCM. The first body portion defines a first contact surface. The second stamped actuator arm may include a second arm portion and a second body portion, the second body portion defining a second contact surface. According to one embodiment, the first and second stamped actuator arms may be attached to one another such that the first contact surface faces and contacts the second contact surface.
Abstract:
A disk drive includes a pivot-bearing cartridge configured to pivotally support the head stack assembly on the base of the drive. A tolerance ring is coupled to the pivot-bearing cartridge and includes a single sleeve defining an inner sleeve surface facing the pivot-bearing cartridge and an outer sleeve surface facing away therefrom, and a layer of dampening material disposed on the inner or outer sleeve surfaces so as to be in contact with the pivot-bearing cartridge or the bore surface of the through bore that is defined in the body portion of the head stack assembly, respectively.
Abstract:
An arm assembly of an actuator arm assembly of a disk drive is stamped from a single flat sheet of material and includes first and second actuator arm portions and one or more bendable portions integrally joining the first and second actuator arm portions. A method of making an arm assembly for a disk drive includes steps of providing a flat sheet of material and stamping an arm assembly from the sheet such that the stamped arm assembly includes first and second actuator arm portions and one or more bendable portions integrally joining the first and second actuator arm portions.
Abstract:
A disk drive includes a disk, a voltage supply, a head stack assembly and a switching circuit. The head stack may include a coil portion that includes a coil assembly having first and second wound coils. The switching circuit is electrically coupled to the voltage supply and to the coil assembly, and is configured to selectively switch the first and second wound coils between a first configuration and a second different configuration in which the first wound coil is electrically in parallel with the second wound coil.
Abstract:
A disk drive includes a magnetic element having first and second magnets extending radially with respect to an axis of rotation of an actuator. The disk drive further includes a main coil. The main coil includes first and second radial segments. The first radial segment overlaps the first magnet throughout a full range of motion of the actuator. The second radial segment overlaps the second magnet throughout the full range of motion of the actuator. The disk drive further includes a secondary coil which is separately energized from the main coil. The secondary coil is configured to produce magnetic forces upon the actuator substantially parallel to the actuator longitudinal axis. The secondary coil includes a lateral segment disposed perpendicular to the actuator longitudinal axis and overlapping the first and second magnets throughout the full range of motion of the actuator.
Abstract:
A spindle motor for use in a disk drive includes a spindle motor base. The spindle motor further has a spindle motor hub rotatably attached to the spindle motor base. The spindle motor further has a motor shaft in mechanical conmmunication with the spindle motor base. The spindle motor further has an inner ball bearing set surrounding the motor shaft. The inner ball bearing set has a first inner race and a first outer race. The first inner race is attached to the motor shaft. The spindle motor has an outer ball bearing set surrounding the inner ball bearing set. The outer ball bearing set has a second inner race and a second outer race. The second inner race is fixed relative to the first outer race.
Abstract:
A disk drive includes a voice coil motor (VCM) having a narrow coil angle and a magnet magnetized with two or three pole pairs. The VCM magnet may define first, second and third sections, the second section being magnetically polarized in an axial direction that is opposite to that of the first and third sections. The first radial leg of the VCM coil faces the second section and the second radial leg faces the third section when the head is positioned at a non-operational position. The first radial leg faces the first section and the second radial leg faces the second section when the head is reading and/or writing to the data portion of the disk. Alternatively, the VCM magnet defines first and second sections that are magnetized in opposite axial directions. The first and second radial legs of the VCM coil respectively face the first and the second sections when the head is positioned over the data portion of the disk and only the first radial leg faces the second section when the head is at a non-operational position.
Abstract:
The present invention may be regarded as a disk drive comprising a disk, an actuator arm comprising a head, and a voice coil motor for actuating the actuator arm to position the head radially over the disk. The voice coil motor comprises a first magnet for generating a first magnetic flux, and a rotary voice coil yoke comprising a magnetic flux conductor shaped to form an air gap with respect to the first magnet, the magnetic flux conductor comprising a first end having a first reluctance and a second end having a second reluctance, wherein the first reluctance is substantially lower than the second reluctance such that the magnetic flux conductor guides the first magnetic flux through the air gap and through the first end. A voice coil is wrapped around at least part of the magnetic flux conductor for conducting a current to generate a second magnetic flux such that at least part of the second magnetic flux is within the air gap for interacting with the first magnetic flux.
Abstract:
A magnetic latch assembly for immobilizing a read/write head of a disk drive is provided which magnetically couples to an actuator assembly housing the read/write head with enhanced force. A disk drive which includes the magnetic latch assembly is also provided. The magnetic latch assembly includes a magnet and a magnet holder including ferromagnetic material which at least partially surrounds the magnet and provides a medium through which flux produced by one pole of the magnet travels to an opposing pole of the magnet. The latch assembly magnetically couples the actuator assembly by contacting the actuator assembly in an area adjacent one of the poles of the magnet. In one embodiment, the magnet holder includes ferromagnetic material which surrounds the magnet. In another embodiment, the magnet holder includes a plurality of ferromagnetic flanges which at least partially surround the magnet.
Abstract:
An apparatus for rotatably journaling a rotor of a spindle motor about a stator comprising a plurality of magnetic bearings for use in a disc drive including an annular ring single-pole magnet which is integral with the spindle permanent magnet of a spindle motor rotor assembly and disposed in opposition to a complementary annular magnet ring attached to the stator assembly of the spindle motor. These magnetic bearings in conjunction with an axial pivot form a radially stable bearing system for maintaining rotor displacement about the stator in conjunction with a conventional axial pivot. The present invention provides for the unique combination of magnetic bearings with other conventional pivots for use in disc drive systems.