Abstract:
An ink set for ink jet recording including plural color inks including a black ink, the ink set including water, a water-soluble organic solvent and colorants. At least one of the color inks having a hue other than black is a specified color ink containing a compound for coagulating a colorant contained in the black ink, at least one of other color inks has a function for improving coagulability between the colorant contained in the black ink and the compound contained in the specified color ink, and the drying time of the black ink on a plain paper sheet is less than 5 seconds.
Abstract:
An ink jet recording apparatus is provided with a recording head that ejects ink droplets, an ink tank that supplies ink to the recording head, a waste ink recovering mechanism that recovers ink droplets ejected from the recording head as waste ink, a waste-ink tank, which is connected to the waste-ink recovering mechanism and stores the waste ink, a diluent tank which is communicated with the waste-ink tank and accommodates a diluent that dilutes the waste ink, and at least one of diluent supplier, that is, one of a first diluent supplier which supplies the diluent in the diluent tank to the waste-ink tank to make the conductivity of the waste ink in the waste-ink tank substantially the same as the conductivity of the ink stored in the ink tank and a second diluent supplier which supplies the diluent in the diluent tank to the waste-ink tank to make the specific gravity of the waste ink in the waste-ink tank substantially the same as the specific gravity of the ink stored in the ink tank. Further, an ink jet recording method uses this ink jet recording apparatus.
Abstract:
An ink jet recording device including a recording head for depositing ink on a recording medium and a liquid absorbing device for absorbing excess liquid of the ink remaining on the recording medium after the depositing of the ink on the recording medium using the recording head, wherein the liquid absorbing device includes an absorber including a hydrophilic surface which contacts the excess liquid, and the hydrophilic surface has a residual fine particle ratio of not less than about 90%, the residual fine particle ratio being a ratio of fine particles remaining on the hydrophilic surface when fine particles having an average particle size of 5 μm are filtered by the hydrophilic surface.
Abstract:
In a diffraction grating device (1), index modulations are formed along the longitudinal direction of an optical fiber (10) serving as an optical waveguide. The optical fiber (10) has a core region (11), an inner cladding region (12), and an outer cladding region (13) sequentially from the optical axis center. Index modulations are formed in both the core region (11) and the inner cladding region (12) of the optical fiber (10) in each of a plurality of regions A1 to AN (N is an integer; N≧2) separated from each other along the longitudinal direction of the optical fiber (10). In the diffraction grating device (1), regions An (n=1 to N) in which index modulations are formed in both the core region (11) and the inner cladding region (12) and regions Bn (n=1 to N−1) in which no index modulations are formed alternately exist along the longitudinal direction.
Abstract:
In an aqueous ink jet recording liquid including at least water, a water-soluble organic solvent and a water-insoluble coloring material, (1) the absolute value of the zeta potential is 20 mV or more, (2) the conductivity is from 0.05 to 0.75 S/m, (3) the number average particle size of dispersed particles is from 15 to 200 nm, and (4) the number of particles having a particle size of 0.5 &mgr;m or more present in one liter is 2.5×1011 or less. Due to the aforementioned, dispersion stability of the coloring material can be maintained in the ink jet recording liquid in which the water-insoluble coloring material is dispersed, and the aqueous ink jet recording liquid is provided, which is excellent regarding stability over long periods of time, causes no ink flow route clogging and prevents kogation in printing, provides a recorded material having excellent rub resistance, printing quality, optical density, water resistance and lightfastness, and can prevent uneven density.
Abstract:
Disclosed is an ink for ink jet recording comprising water, a pigment that is self-dispersible-in-water, and a water-soluble organic solvent, wherein said ink for ink jet recording contains a water-soluble organic compound having an S.P. value of 12 or less and a surface tension at 25° C. of less than 40 mN/m in an amount of from 3.0 to 15.0 wt % based on the entire weight of the ink. Also, disclosed are a method for producing the ink and an ink jet recording method by using the ink.
Abstract:
An ink jet recording ink comprising: (i) water, (ii) a water-soluble organic solvent, (iii) at least one dye having at least one carboxyl group in the form of a free acid, (iv) a substituted aromatic compound represented by general formula (I); and (v) at least one alkali metal hydroxide, wherein the pH value of the ink is from 8 to 12, and an ink jet recording method in which such ink droplets are discharged from an orifice according to a recording signal to record an image using this ink jet recording ink are disclosed, general formula (I) being: ##STR1##
Abstract:
A gas discharge display panel which provides sufficient contrast and good accuracy and is high in yield. When a voltage is applied to auxiliary discharge electrodes, auxiliary discharge occurs in an auxiliary discharge space and excited charged particles communicate with a main discharge space through a priming path made in a discharge space separation bulkhead. In this state, when an alternating voltage is applied between bus electrodes on a front substrate, main discharge occurs in the main discharge space, causing Xe atoms in the sealed gas to generate ultraviolet rays, causing a phosphor to emit light. However, since the auxiliary discharge is shielded by a bulkhead and a barrier rib, the phosphor does not emit light when only auxiliary discharge occurs.
Abstract:
An ink for ink jet recording, which comprises water, a water-soluble dye and a water-soluble organic solvent, wherein said ink contains potassium ion in an amount of from not less than 450 ppm to not more than 10,000 ppm, and said water-soluble organic solvent comprises glycerin in an amount of from 5 to 20% by weight based on the total weight of said ink.
Abstract:
Ink-jet recording ink comprising water, a water-soluble organic solvent and a color material as essential ingredients, wherein the total volume of particulate matter ranges from 1.times.10.sup.-9 to 1.times.10.sup.-2 cm.sup.3 per cm.sup.3 of ink, whereby defects in images such as blank areas on images, fluctuations in dot diameter and the disturbed shape of dots are not generated to give a prominent effect and wherein the total volume of the particulate matter existing in 1 cm.sup.3 of the ink is adjusted to 3.5.times.10.sup.-6 or less, whereby ink which is stable even after long-term use can be obtained and change in amount of ink at jetting is slight, as well as defects in images can be prevented.