Abstract:
An opto-electronic module connector system is mountable on a system substrate, such as a printed circuit board, in a variety of configurations or orientations and includes an electromagnetic interference (EMI)-shielding enclosure, a connector assembly, and a socket. The connector assembly includes a connector body, a connector printed circuit board, a substantially planar contact holder, electrical contact fingers mounted on the contact holder, and an opto-electronic module. When the EMI-shielding enclosure and socket are mounted on the system substrate, a user can readily insert the connector assembly into the EMI-shielding enclosure and plug it into the socket. A user can likewise readily remove the connector assembly from the EMI-shielding enclosure and socket for maintenance, cleaning, repair or other purposes.
Abstract:
In a connector system, a first connector is mechanically and optically mateable with a second connector to form one or more optical signal communication links A wiping cleaner is included on at least one of the first and second connectors for cleaning an optical port of the other of the first and second connectors when the connectors are plugged together. The first and second connectors can further be electrically mateable to provide both optical and electrical signal communication links
Abstract:
In accordance with an embodiment, a method includes electronically receiving a media presentation description (MPD) from a network. The MPD describes multimedia content that includes alternative representations of a plurality of media types, and the MPD includes information indicative of how the alternative representations are encoded. The method also includes selecting one of the plurality of alternative representations for at least one of the plurality of media types based on information included in the MPD, requesting the selected one of the plurality of alternative representations piece-by-piece, and electronically receiving a piece of media data.
Abstract:
System and methods for media distribution are described. In one embodiment, a method of media distribution includes rendering of a media to a user, stopping the rendering of the media, and storing remaining media not rendered to the user in a user server. The method further includes receiving a request to stream the remaining media to the user, dividing the remaining media into segments, and assigning a priority to each segment. The remaining media is streamed, leaving out segments with priority lower than a threshold priority.
Abstract:
A system and method for media adaptation are provided. A method for providing media to an electronic device includes receiving a request for a media with a set of characteristics, and determining if the media with the set of characteristics resides in a media storage. The method also includes if the media with the set of characteristics resides in the media storage, retrieving the media with the set of characteristics from the media storage. The method further includes if the media with the set of characteristics does not reside in the media storage, transcoding an alternate media with an alternate set of characteristics to produce a transcoded media with the set of characteristics. The method additionally includes providing the media with the set of characteristics from the media storage or the transcoded media with the set of characteristics to the electronic device.
Abstract:
In accordance with an embodiment, a method of operating a computer server includes receiving streaming media data. The streaming media data includes content fragments and a media description file, and the media description file includes metadata describing the content fragments. The method also includes storing the content fragments in a cache.
Abstract:
In a method of forming a device so as to include a reflective surface at a specific angle to an incident optical axis, a region of a first major surface of a substrate is exposed to an anisotropic etchant to form a surface having the specific angle with respect to the first major surface, but the etched surface is then used as a mounting surface. That is, rather than anisotropically etching a reflective surface, the etching provides the mounting surface and the second major surface of the substrate functions as the reflective surface when the fabricated device is properly mounted. The substrate may be a silicon wafer having a 9.74 degree off-axis cut. Then, a 45 degree mirror is formed by the process. When the reflector is used in an optical device, the crystalline plane will be generally parallel to the surface of the support.
Abstract:
A method comprises encoding a first view component of a first view of a multiview bitstream; and encoding a second view component of a second view; wherein the encoding of the second view component enables generating of a reference picture list for the second view component to include at least one of the following: (a) a first field view component based on the first view component or (b) a first complementary field view component pair including the first view component.
Abstract:
A method comprises storing real-time multimedia data in a plurality of tracks and/or track subsets; and identifying one or more multi-track groups, each multi-track group being associated with a relationship among one or more of the plurality of tracks and/or track subsets.
Abstract:
Methods and systems for coordinating user terminals are disclosed. A user terminal may receive a user terminal identifier and a sensor identifier from a user terminal, determine a group topology based on the user terminal identifier and the sensor identifier to identify a spatial relationship relative to the user terminal, receive a media signal, and identify a subsection of the media signal. The user terminal also may generate subsection information to assign a subsection of the media signal to the user terminal corresponding to the spatial relationship, and may communicate the subsection information to the user terminal.