Abstract:
A method is disclosed involving receiving GPS data from a personal portable training device. A smoothing operation is performed on the GPS data to generate a more accurate representation of the route travelled for display to a user (504). In the smoothing operation, a cubic spine algorithm is used to obtain an initial estimate of the route representation (500). The estimate is then subjected to a refinement using at least received user motion data recorded by the personal training device (502). In addition one or more of: data indicative of the GPS accuracy; historical route data; and digital map data, such as building footprints and bodies of water, may be used in refining the estimate.
Abstract:
A method of compressing data output from one or more accelerometers configured to be transported, carried or worn by a user is provided. Acceleration values indicative of the movement of the user are measured at a first frequency and values representative of the measured acceleration values are generated at a second frequency, which is lower than the first frequency. The step of generating comprises: defining a plurality of time windows, each time window containing a plurality of measured acceleration values; and applying a transformation to the measured acceleration values within each time window to generate a plurality of transformed values. For each time window, storing at least one of said plurality of transformed values and/or one or more parameters associated therewith.
Abstract:
A method is disclosed for generating an orthorectified tile. In at least one embodiment, the method includes retrieving source images obtained by way of a terrestrial based camera; retrieving position data associated with the source images; retrieving orientation data associated with the source images; and converting source image by means of corresponding position data and orientation data to obtain the orthorectified tile. Orthorectified tiles are used to generate an orthorectified mosaic. As such, images recorded by terrestrial based camera may be used to generate a map of a road surface with corresponding road signs.
Abstract:
In one embodiment of the present invention, a method of and apparatus for determining inaccurate GPS samples in a set of GPS samples is disclosed, according to the following actions: a) obtaining GPS samples as taken by a global positioning system on board a vehicle when traveling along a trajectory; b) obtaining a first estimation of the trajectory based on the GPS samples; c) obtaining a second estimation of the trajectory at least based on measurements made by an inertial measurement unit on board vehicle when traveling along the trajectory; d) comparing the first and second estimations; e) establishing locations where the first estimation shows a variation compared with the second estimation above a predetermined threshold; f) if no such locations can be established continue with action j), otherwise continue with action g); g) removing GPS samples associated with the locations of high variation as being inaccurate GPS samples, thus forming a set of remaining GPS samples; h) calculating the first estimation anew of the trajectory based on the remaining GPS samples and calculating the second estimation anew; i) repeating actions d) to h); j) ending the actions.
Abstract:
This invention relates to a method for updating digital maps and for matching global navigation devices to a digital map. Such navigation devices rely upon GPS signals (20, 24) from satellites (22, 26). One well-documented cause of position error in navigation devices arises from the phenomenon of GPS multi-path. It has been observed that GPS multi-path errors in the latitude/longitude direction are highly correlated with errors in altitude. By comparing altitude value of GPS probe data with reference specifications for altitude, unreliable probe data (outliers) can be easily identified and culled. Such techniques can be used as well by a mobile navigation device to confirm a match to a particular road segment and if not revert to other positioning techniques such as inertial guidance systems and the like. If the local altitude is not reliably known, an estimation can be derived directly from the collected probe data.
Abstract:
A method of processing camera data of a mobile mapping system is disclosed. In at least one embodiment, the method includes a) obtaining camera data from at least one camera of the mobile mapping system, b) detecting at least one region in the camera data, c) applying a compression technique on the camera data in a first region, and d) obtaining range sensor data from at least a first range sensor. The range sensor data may at least partially correspond to the camera data. Also, in at least one embodiment, b) includes using the range sensor data to identify the at least one region in the camera data.
Abstract:
A method of producing lane information for use in a map database is disclosed. In at least one embodiment, the method includes acquiring one or more source images of a road surface and associated position and orientation data, the road having a direction and lane markings parallel to the direction of the road; acquiring road information representative of the direction of said road; transforming the one or more source images to obtain a transformed image in dependence of the road information, wherein each column of pixels of the transformed image corresponds to a surface parallel to the direction of said road; applying a filter with asymmetrical mask on the transformed image to obtain a filtered image; and producing lane information from the filtered image in dependence of the position and orientation data associated with the one or more source images.
Abstract:
A method of producing linear features along a reference-line across a surface for use in a map database is disclosed. In at least one embodiment, the method includes generating, from reference-line data representative of coordinates of the reference-line in a geographic coordinate reference system and source images of the surface adjacent to the reference-line and associated position and orientation data in the geographic coordinate reference system, a reference-line referenced data set, wherein the reference-line referenced data set includes a plurality of sets of image data and associated data defining a reference-line across a surface in the geographic coordinate reference system, the sets of image data including pixels wherein a set of image data corresponds to an orthorectified view representation of a line section of the surface in the geographic coordinate reference system, each set of image data includes a reference pixel being associated with a position on the reference-line, wherein each pixel represents a surface having a position at a distance from the position of the reference pixel along the line section, and wherein the line section perpendicularly crosses the reference-line at the position associated with the reference pixel; and, post processing the reference-line referenced data set to produce linear features along the reference-line and associated locations in the geographic coordinate reference system for use in a map database.