Abstract:
A system is provided for testing and enhancing the alertness of operators who monitor video surveillance imagery. Alertness is tested by displaying any of a variety of visual elements on top of or near the video imagery, and receiving input from human operators in response to the visual elements, via one or more input devices. The system further allows for economic management of human operators by transmitting imagery from many video sources to any number of operators. Video feeds are automatically switched, via software, away from an operator who wishes to take a break or has poor alertness. In this fashion, the system maximizes operator vigilance while also maximizing workflow for all available operators.
Abstract:
A robot system that includes a robot and a remote station. The remote station may be a personal computer coupled to the robot through a broadband network. A user at the remote station may receive both video and audio from a camera and microphone of the robot, respectively. The remote station may include a display user interface that has a variety of viewable fields and selectable buttons.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
A robot system that includes a remote control station and a robot that has a camera, a monitor and a microphone. The robot includes a user interface that allows a user to link the remote control station to access the robot. By way of example, the user interface may include a list of remote control stations that can be selected by a user at the robot site to link the robot to the selected control station. The user interface can display a connectivity prompt that allows a user at the robot site to grant access to the robot. The connectivity prompt is generated in response to a request for access by a remote control station. The robot may include a laser pointer and a button that allows a user at the robot site to turn the laser pointer on and off.
Abstract:
A robotic system that can be used to treat a patient. The robotic system includes a mobile robot that has a camera. The mobile robot is controlled by a remote station that has a monitor. A physician can use the remote station to move the mobile robot into view of a patient. An image of the patient is transmitted from the robot camera to the remote station monitor. A medical personnel at the robot site can enter patient information into the system through a user interface. The patient information can be stored in a server. The physician can access the information from the remote station. The remote station may provide graphical user interfaces that display the patient information and provide both a medical tool and a patient management plan.
Abstract:
A tele-presence system that includes a portable robot face coupled to a remote station. The robot face includes a robot monitor, a robot camera, a robot speaker and a robot microphone. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The portable robot face can be attached to a platform mounted to the ceiling of an ambulance. The portable robot face can be used by a physician at the remote station to provide remote medical consultation. When the patient is moved from the ambulance the portable robot face can be detached from the platform and moved with the patient.
Abstract:
Disclosed herein are various embodiments of systems and methods for visualizing, analyzing, and managing telepresence devices operating in a telepresence network of healthcare facilities. A user may selectively view a global view of all telepresence devices, telepresence devices within a particular region, the details of a particular telepresence device, and/or the details of a particular healthcare facility. At one viewing level, a user may view a plan view map of a healthcare facility and visualize the navigational history of a telepresence device. At another viewing level, a user may view a plan view map of a healthcare facility and visualize telemetry data of a patient associated with a selected room. At another viewing level, a user may selectively view various graphical representations of telepresence device statistics and usage information with respect to health ratings for each of a plurality of patients.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
A tele-presence system that includes a portable robot face coupled to a remote station. The robot face includes a robot monitor, a robot camera, a robot speaker and a robot microphone. The remote station includes a station monitor, a station camera, a station speaker and a station microphone. The portable robot face can be attached to a platform mounted to the ceiling of an ambulance. The portable robot face can be used by a physician at the remote station to provide remote medical consultation. When the patient is moved from the ambulance the portable robot face can be detached from the platform and moved with the patient.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.