Abstract:
Substrate-guided relays that employ light guiding substrates to relay images from sources to viewers in optical display systems. The substrate-guided relays are comprised of an input coupler, an intermediate substrate, and an output coupler. In some embodiments, the output coupler is formed in a separate substrate that is coupled to the intermediate substrate. The output coupler may be placed in front of or behind the intermediate substrate, and may employ two or more partially reflective surfaces to couple light from the coupler. In some embodiments, the input coupler is coupled to the intermediate substrate in a manner that the optical axis of the input coupler intersects the optical axis of the intermediate substrate at a non-perpendicular angle.
Abstract:
An imaging system (200), such as a scanned laser projection system, includes one or more laser sources (201) configured to produce one or more light beams (204), and a light modulator (203) configured to produce images (206) from the light beams (204). Optional optical alignment devices (220) can be used to orient the light beams (204) into a combined light beam (205). A birefringent wedge (221) is disposed between at least one of the laser sources (201) and the light modulator (203). The birefringent wedge (221) is configured to receive light from the laser sources (201) and deliver two angularly separated and orthogonally polarized light beams (223) to the light modulator (203) so as to reduce speckle appearing when the images (206) are displayed on a display surface (207). An optional glass wedge (1004) can be used to correct optical path deviation (1001) introduced by the birefringent wedge (221).
Abstract:
An imaging system (200), such as a scanned laser projection system, includes one or more laser sources (201) configured to produce one or more light beams (204), and a light modulator (203) configured to produce images (206) from the light beams (204). Optional optical alignment devices (220) can be used to orient the light beams (204) into a combined light beam (205). A beam separator (221), which can be any of a birefringent wedge, compensated birefringent wedge, or a polymerized liquid crystal layer, is disposed between at least one of the laser sources (201) and the light modulator (203). The beam separator (221) is configured to receive light from the laser sources (201) and deliver two angularly separated and orthogonally polarized light beams (223) to the light modulator (203) so as to reduce speckle appearing when the images (206) are displayed on a display surface (207).
Abstract:
Briefly, in accordance with one or more embodiments, a birefringent layer may be utilized in conjunction with a head-up display (HUD) for a vehicle or the like, for example where the birefringent layer is disposed in or on the windshield. The birefringent layer may impart a change in the polarization of light emerging from a projector of the head-up display in order to reduce or minimize interference between beams from the display and reflecting off of two or more surfaces that are combined at the viewer's eye, and/or to reduce or minimize the effect of polarizing sunglasses on the viewability of the image projected by the display. In one or more embodiments, the birefringent layer alters the polarization of the light reaching the viewer's eye if the user is wearing polarizing glasses or lenses so that less light from the display is blocked.
Abstract:
An image producing system (1400) delivers images (1414) having reduced speckle by employing one or more drive circuits (1404, 1405, 1406) that deliver both a direct current drive signal (205) and an alternating current drive signal (405) to one or more lasers (1401, 1402, 1403). Specifically, an alternating current drive circuit (403) is used in conjunction with a direct current drive circuit (203) to modulate a drive signal. The modulation can be at a frequency of between 400 MHz and 600 MHz. When lasers, such as the red laser (1401) or the blue laser (1403) of a multi-laser system are modulated in such a fashion, their emitted spectral widths (407) greatly expand, thereby reducing speckle in projected images (1414).
Abstract:
Briefly, in accordance with one or more embodiments, a birefringent layer may be utilized in conjunction with a head-up display (HUD) for a vehicle or the like, for example where the birefringent layer is disposed in or on the windshield. The birefringent layer may impart a change in the polarization of light emerging from a projector of the head-up display in order to reduce or minimize interference between beams from the display and reflecting off of two or more surfaces that are combined at the viewer's eye, and/or to reduce or minimize the effect of polarizing sunglasses on the viewability of the image projected by the display. In one or more embodiments, the birefringent layer alters the polarization of the light reaching the viewer's eye if the user is wearing polarizing glasses or lenses so that less light from the display is blocked.
Abstract:
A scanned beam projection system includes a polarizing beam splitter, a polarization rotating component and a scanning mirror. Light is directed on a first light path to the polarizing beam splitter at a substantially constant angle of incidence. The P-polarized light passes through. The P-polarized light passes through the polarization rotating component, is reflected off the scanning mirror back through the polarization rotating component, and arrives at the polarizing beam splitter as S-polarized light with a non-constant angle of incidence. The S-polarized light is reflected by the polarizing beam splitter, and a scanned image results.
Abstract:
The invention provides a pickup head used in an optical data storage system. The pickup head contains a diffractive optical element (DOE) stack on a semiconductor substrate. The DOE stack includes multiple diffractive lenses for providing several diffractive surfaces and a middle layer serving as a beamsplitter and servo-generating element for a light reflected from an optical storage medium. The middle layer is sandwiched by the diffractive lenses that are located on both outer parts of the DOE stack. The semiconductor substrate includes at least a laser source and several photodetectors. The middle layer's function preferably includes a polarization-selective DOE and a quarter-wave retarder oriented to rotate a polarization state of the laser source, so that only the light reflected from the optical storage medium is diffracted by the polarization-selective DOE.
Abstract:
A pickup head for use in optical disk systems such as compact disk players or CD-ROM computer memory includes a holographic optical element that has two decision regions that greatly simplify the design of the pickup head. The two decision regions diffract light that encounters the holographic optical element in two different directions, respectively. The amount of light power incident upon each decision region is utilized to determine a focus error signal and to interpret information stored on the compact or optical disk.
Abstract:
A scanning projector includes a MEMS device with a scanning mirror that sweeps a beam in two dimensions. Actuating circuits receive scan angle information and provide signal stimulus to the MEMS device to control the amount of mirror deflection on two axes. The period of movement on one or both axes may be modified to effect changes in line density in a resultant display.