Abstract:
The present application relates to a metal-nucleic acid nanoparticle which is a nanoparticle having a spherical structure formed by assembly of metal ions with nucleic acids via coordination. The preparation thereof is mixing a metal ion solution with a nucleic acid solution to obtain a mixture followed by vortex, heating, centrifugation, washing with water and resuspension to obtain the metal-nucleic acid nanoparticles.
Abstract:
The invention relates to a micro-nano particles detection system and a method thereof. The system comprises a heating unit (1), a sample chamber unit (2), and a signal acquisition unit (4), wherein the heating unit (1) is arranged outside the sample chamber unit (2) for heating a sample in the sample chamber unit (2). Micro-nano particle fluid is loaded in the sample chamber unit (2). After the heating unit (1) heats the sample chamber unit (2), the sample chamber unit (2) generates a thermophoresis effect, so that the micro-nano particles are gathered at one side with temperature lower than the micro-nano particle fluid in the sample chamber unit (2). The signal acquisition unit (4) is used for collecting relevant information of the gathered micro-nano particles, and carrying out corresponding analysis.
Abstract:
Provided is a conical nano-carbon material functionalized needle tip, formed by assembling a nano-carbon material with a material of a needle tip by means of a covalent bond; and the material of the needle tip is a metal selected from one or more of tungsten, iron, cobalt, nickel and titanium. Further provided is a method for preparing the conical nano-carbon material functionalized needle tip. The conical nano-material functionalized needle tip has an outstanding interface formed by metal-carbide covalent bonds, and the orientation of the conical nano-material is matched with the axial direction of the metal needle tip (illustrated in FIG. 6). The proposed preparation method affords a robust interface and avoids the potential pollution to the nano-material caused during the deposition of fixing materials, such as carbon or platinum or the like, in other preparation methods.
Abstract:
The present invention provides a preparation method of an antigen composition. The preparation method comprises the following steps: (1) obtaining a tumor antigen protein; (2) making the tumor antigen protein into contact with an immature dendritic cell; (3) inducing the immature dendritic cell in contact with the tumor antigen into a mature dendritic cell; and (4) separating a cell vesicle of the mature dendritic cell. The present invention further provides an antigen composition obtained through the preparation method and the application thereof in preparing a tumor vaccine.
Abstract:
Provided is a method for treating single-walled carbon nanotube, comprising: (1) allowing single-walled carbon nanotubes to contact with a surfactant and a dispersant sequentially in the present of a solvent, to obtain highly dispersed single-walled carbon nanotubes in which the content of single dispersed single-walled carbon nanotubes is not lower than 50 wt %, wherein, the single-walled carbon nanotubes can be dispersed in the solvent, and the surfactant and dispersant can be dissolved in the solvent; (2) employing density gradient centrifugation to sort the highly dispersed single-walled carbon nanotubes obtained in step (1). This method can effectively separate single-walled carbon nanotubes with different structural properties.