Abstract:
A semiconductor device characterized by comprising a first insulating film formed on the semiconductor substrate, a first wiring or mark formed on the first insulating film, an electrically isolated pattern formed under the first insulating film and below the first wiring or mark, a hole formed in the first insulating film to connect the first wiring or mark and the electrically isolated pattern, and a second insulating film for covering the first wiring or mark.
Abstract:
A power strip includes a casing including a plurality of plug insertion portions each having a first insertion port and a second insertion port into which first and second plug blades of a socket plug are to be respectively inserted, a magnetic core which is provided in each of the plurality of plug insertion portions and includes a first opening into which the first plug blade is to be inserted, a second opening into which the second plug blade is to be inserted, and a slit to communicate between the first plug blade and the second plug blade, and a magnetic sensor provided inside the slit.
Abstract:
A micro movable element array includes a first frame; a second frame; a first movable part row including plural first movable parts and a second movable part row including plural second movable parts. The first movable parts include first movable main parts. The second movable parts include second movable main parts. The first and second frames are stacked such that the first and second movable part rows are opposed to each other. In the first movable part row, the first movable parts are located such that the first movable main parts are arranged in a first direction and the first movable main parts and gaps are disposed alternately. In the second movable part row, the second movable parts are located such that the second movable main parts are arranged in the first direction and the second movable main parts are opposed to the corresponding gaps.
Abstract:
A micro-movable device includes a frame, a movable section including a body section, and a torsion coupling section for coupling the frame with the movable section to define an axis of oscillation of the movable section, wherein the frame includes a first extending portion and a second extending portion that are spaced apart from each other in a direction parallel to the axis and extend along the body section, and oppose the body section via a gap.
Abstract:
A semiconductor device includes a semiconductor chip having an electric circuit; and a cooling device including at least one channel serving as a flow path through which coolant flows, an external surface including projections, and a metallic layer formed over the external surface including the projections. In the semiconductor device, the projections of the external surface of the cooling device are brought into contact with a first surface of the semiconductor chip via the metallic layer such that the semiconductor chip is cooled by allowing the coolant to flow through the channel formed in the cooling device.
Abstract:
A micro movable element array includes a first frame; a second frame; a first movable part row including plural first movable parts and a second movable part row including plural second movable parts. The first movable parts include first movable main parts. The second movable parts include second movable main parts. The first and second frames are stacked such that the first and second movable part rows are opposed to each other. In the first movable part row, the first movable parts are located such that the first movable main parts are arranged in a first direction and the first movable main parts and gaps are disposed alternately. In the second movable part row, the second movable parts are located such that the second movable main parts are arranged in the first direction and the second movable main parts are opposed to the corresponding gaps.
Abstract:
A micro oscillating device includes a first frame; an oscillating portion; a first twist coupling portion and a second twist coupling portion coupling the first frame and the oscillating portion to define a first shaft center of an oscillating operation of the oscillating portion; a second frame including a support base and an arm portion extended from the support base toward the oscillating portion; and a third twist coupling portion and a fourth twist coupling portion coupling the second frame and the first frame to define a second shaft center of an oscillating operation of the first frame, wherein the third twist coupling portion is coupled to the first frame and the arm portion between the oscillating portion and the support base, and the fourth twist coupling portion is coupled to the first frame and the support base or the arm portion between the oscillating portion and the support base.
Abstract:
A micro-movable device includes a frame, a movable section including a body section, and a torsion coupling section for coupling the frame with the movable section to define an axis of oscillation of the movable section, wherein the frame includes a first extending portion and a second extending portion that are spaced apart from each other in a direction parallel to the axis and extend along the body section, and oppose the body section via a gap.
Abstract:
A method for manufacturing a micro movable element includes: forming a movable section, a frame, and a connecting section connecting the movable section with the frame on a substrate; bonding a film to a surface of the substrate in forming the movable section, the frame, and the connecting section; and patterning the film to form a support structure being bridged between the movable section and the frame.
Abstract:
The optical switch includes: a spectroscopic device which separates wavelength division multiplexed (WDM) light into its component wavelengths; and a plurality of movable reflectors, arranged in a spectral direction at different intervals, for reflecting light of an individual component wavelength separated by said spectroscopic device. With this optical switch, deterioration of the characteristic of the pass band is avoided, so that the pass band characteristic is increased.