Abstract:
A standard media suspension body (150) for verification and calibration of an optical particulate measurement instrument and configured to be at least partially immersed in a sample fluid is provided according to the invention. The body (150) includes a substantially solid outer surface including a first end (151) and a second end (152) disposed along an axis of illumination A and at least one outer surface (153). The first end (151) is configured to admit impinging light. The suspension body further includes an inner volume. At least a portion of the inner volume includes a substantially suspended light scattering material (155) that is configured to scatter a predetermined quantum of the admitted light. The suspension body (150) further includes an end cap (156) formed on the second end (152) and comprising a light absorbing material. Light exiting the second end (152) is substantially absorbed by the end cap (156).
Abstract:
A measurement system that can measure scattered light across a predetermined scatter angle is disclosed. The measurement system has a light source configured to provide light along a first axis. The measurement system has a lens system aligned along a second axis that has a first focus near the first axis and where the second axis is different than the first axis. The measurement system has a sensor located on the second axis at a second focus of the lens system and is configured to detect scattered light near the first focus. The measurement system has a mask located on the second axis and is configured to limit the light that reaches the sensor to a predetermined angle of scatter. The disclosed invention eliminates the need for multiple nephelometric measuring devices and also system verification devices in order to perform assay of the presents or absence or number of suspended particles in a media as well as verification of the systems ability to measure in compliance to required performance attributes.
Abstract:
An integrating sphere, and an integrating sphere-based reflectance colorimeter/spectrophotometer for the measurement of color and appearance, having multiple receivers capable of concurrently receiving optical radiation scattered/reflected from a diffusely illuminated sample surface, with the capability of multiple measurement modes (e.g., multiple specular component excluded (SCE), SCE and specular component included (SCI), multiple SCI), multiple areas-of-view for a given measurement mode, multiple viewing angles per measurement mode, and combinations thereof. An embodiment of the invention includes two SCI receivers and two SCE receivers, each disposed at an equal viewing angle relative to the sample surface. For each viewing mode, two sample areas-of-view are provided. The SCE receivers are opposite each other, such that the specular component of each SCE receiver is excluded by the port of the other SCE receiver. The receivers provide the collected light reflected from the sample to a detector which preferably is provided by multiple spectrometers or a single spectrometer having multichannel capability to preferably sense the light from each receiver in parallel.
Abstract:
An annular optical device (100) includes an annular meso-optic (1) including an annulus (11) centered about an axis of revolution (A) and a secondary optical structure (2) substantially coaxial within the annulus (11). The secondary optical structure (2) and the annular meso-optic (1) are separated by a media (12) including a media refractive index that is lower than the refractive index of the secondary optical structure. The secondary optical structure (2) holds a specimen to be radiated by impinging electromagnetic radiation. Scattered radiation from the secondary optical structure (2) and within the annulus (11) of the annular meso-optic (1) is allowed into the annular meso-optic (1) if an angle of incidence of the scattered radiation exceeds a predetermined incidence threshold. The annular meso-optic (1) re-directs the scattered radiation to comprise re-directed radiation that is substantially parallel to the axis of revolution (A).
Abstract:
An automatic optical measurement system (100) is provided. The measurement system (100) includes a sample vial (10) and an automatic optical measurement apparatus (90) configured to receive the sample vial (10). The automatic optical measurement apparatus (90) is configured to detect a presence of the sample vial (10) in the automatic optical measurement apparatus (90) and measure a light intensity of light substantially passing through the sample vial (10) if the sample vial (10) is present. The measured light intensity is related to sample material properties of a sample material within the sample vial (10).
Abstract:
The optical design of a measurement system is disclosed. The measurement system comprising a light source configured to provide light along a first axis. The measurement system has a reflecting lens aligned along a second axis where the reflecting lens has a first focus on the second axis and a second focus on the second axis where the second focus is between the first focus and the reflecting lens and where the second focus is positioned near the first axis. The measurement system has a field lens located on the second axis and positioned such that the second focus of the reflecting lens occurs inside the field lens. The measurement system has a relay lens system aligned to the second axis where the relay lens system forms a first focus at the second focus of the reflecting lens. The measurement system has a sensor located on the second axis at a second focus of the relay lens system and is configured to detect scattered light near the second focus of the reflecting lens.
Abstract:
A concentric spectrometer which reduces stray light and re-entrant spectra within the spectrometer. The spectrometer includes a non-direct optical path between the entrance slit assembly and exit aperture. Dyson and Offner concentric optical configurations are used to eliminate third-order aberrations The concentric optical system includes a light trap which mitigates or eliminate stray light due to reflection of light incident on the exit aperture region but which does not impinge on the active area of a detector optically coupled to the exit aperture. A two-dimensional area array detector concurrently senses a spectral signal corresponding to an input optical radiation signal and a signal corresponding to zero-input radiation, and the spectral signal is corrected according to the zero-input radiation signal.