Abstract:
In a three-phase permanent-magnet synchronous machine, a pole gap and a skew of permanent magnets on the rotor are designed such that oscillating torques which are caused by the fifth and seventh harmonics of the stator field and of the rotor field are mutually reduced. In particular, the skew can be chosen as a function of the pole gap, such that the majority of the respective oscillating torques is neutralized. This results in minimal torque ripple.
Abstract:
The permanently excited synchronous machine (1) includes a rotor (3) and a stand (2) which contains a three-branched winding system (8) which comprises tooth coils. The stand (2) has a total of three or six grooves (5) and a tooth (6, 7) is formed there between. A total of three tooth coils (9) are arranged in the grooves (5) and each coil is associated with one of the three winding phases. The number of user pole pairs (pN) is four or five. The rotor (3) has twice as many user pole pairs (pN) of permanent magnets (18) which are evenly distributed on the periphery.
Abstract:
The aim of the invention is to provide a linear/rotation drive with an improved transmitter device for detecting the linear and rotational movements. For this purpose, the transmitter device (12, 14, 16, 17) for detecting the linear movement and/or rotational movement of the secondary part (4) of the linear drive (2) configured as an external rotor is at least partially arranged inside the primary part (6) of the linear drive (2). In this manner, the transmitter device (12, 14, 16, 17) is located in a magnetically shielded area. In order to avoid eccentricities in the transmitted device (12, 14, 16, 17), a journal (10) of the secondary part (4) is mounted on a bearing (11) in the primary part (6).
Abstract:
During combined rotatory-linear displacements of a shaft (2), either both motions, or one of them, is supposed to be decelerated without high energy expenditure in a simple manner. To this end, a brake comprising a brake holder (1) and at least two arc-shaped brake shoes (5) are proposed, which are each provided with a brake lining, are fastened to the brake holder (1), and can be pressed against the displaceable shaft (2). In this way, advantageously both the linear motion and the rotatory motion of the shaft (2) can be decelerated. In order to decelerate only the linear motion, an axially fixed brake sleeve, which is rotatorily mounted on the shaft, can be used. Furthermore, a linear ball bushing can be used to decelerate the rotatory motion without influencing the linear motion.
Abstract:
A permanent-magnet synchronous machine includes a stator that has slots and a rotor that has permanent magnets which form magnet poles. The permanent magnets are shell magnets having two curved surfaces. Each shell magnet covers a predetermined part of a magnet pole. The external radius of the shell magnets is less than 0.6 times the radius of the stator bore. Each shell magnet has a quasi-radial magnetic preferred direction that is directed substantially perpendicular to its outer surface.
Abstract:
The permanently excited synchronous machine (1) includes a rotor (3) and a stand (2) which contains a three-branched winding system (8) which comprises tooth coils. The stand (2) has a total of three or six grooves (5) and a tooth (6, 7) is formed there between. A total of three tooth coils (9) are arranged in the grooves (5) and each coil is associated with one of the three winding phases. The number of user pole pairs (pN) is four or five. The rotor (3) has twice as many user pole pairs (pN) of permanent magnets (18) which are evenly distributed on the periphery.
Abstract:
The invention relates to a combination drive with a short axial length and a high magnetic capacity. According to the invention, an electric motor comprises a rotational drive device with an outer rotor (AR), and a linear drive device with an outer rotor (AT) or an inner rotor with bearings in the active part. The outer rotor (AR,AT) can be mounted by means of hydrostatic bearings (L1,L2), indirectly by means of a shaft (W), on the stators (SR,ST) of the two drives. Said bearings (L1,L2) are axially arranged inside the outer rotors (AR, AT), presenting a short structural form of the combination drive. Furthermore, the bearings are not located in the magnetic action interstice of the drives, so that they do not influence the capacity of the machine.
Abstract:
The electrical machine (1) has a stator (2), which has slots (6) distributed about the periphery, between which a tooth (7, 8) is placed, and in which a winding system (9) with at least one winding phase is placed. Each winding phase contains at least one coil group. Each coil group contains a first single coil (10) and at least one additional coil (11). All single coils (10, 11) of each coil group are electrically connected in series. Each of the additional single coils (11) is arranged in an offset manner with an offset angle (φmk,i) in relation to the first single coil (10). The respective offset angle (φmk,i) is calculated according to: formula (I) in which k ε {1,2, . . . (n-I, i ε {0,1, . . . (6-pN-1)}, n being a group coil number of all single coils (10, 11) of the respective coil group, k being a coil index of the additional single coils (11), i being a position index, and pN being an effective pole number. The teeth (7, 8) at least partially differ from one another in their respective shape or in their respective extension in the peripheral direction.
Abstract:
The aim of the invention is to provide a linear rotation drive wherein the oscillating torques are reduced to a minimum and whose rotation drive is devoid of axial forces. For this purpose, a magnet of the linear rotation drive is provided with sloped sections or a plurality of magnet sections is configured to give at least two sloped magnet arrangements which are symmetric to a line extending in the circumferential direction of the linear rotation drive. Oscillating torques can also be avoided by distributing the magnets across the circumference of the rotor or stator in an uneven manner. Favorable results can be obtained when the least common multiple of the number of grooves and the number of poles is as high as possible.
Abstract:
The invention relates to an electrical machine (1, 110), which is in particular a synchronous machine, which has a primary part (3, 130) and a secondary part (5, 120), wherein the primary part (3, 130) has a) a first means (9) for producing a first magnetic field and b) a further means (17, 27, 29) for producing a further magnetic field, which in particular is an exciter field, and wherein the first means (9) has at least one winding, and the further means (17, 27, 29) is arranged in the region of an active air gap (21) of the electrical machine between the primary part and the secondary part and has magnetic poles, each having at least one permanent magnet (17).