Abstract:
One embodiment includes a capacitor having a first anode stack having a first number of anode foils, a second anode stack having a second number of anode foils, where the first number of anode foils is different than the second number of anode foils. Another aspect provides a capacitor having a case having a curved interior surface, and first, second, and third capacitor modules that confront the curved interior surface of the case. One aspect provides a capacitor having one or more anodes and a cathode structure comprising a plurality of integrally connected cathode plates, the cathode structure having a serpentine shape, interweaving under and over each of the one or more anodes. One aspect provides a feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough. One aspect provides a capacitor having a first stack of capacitive elements a second stack of capacitive elements, wherein the first and second stacks are enclosed in separate compartments of a capacitor case that electrically isolate the electrolytes of each stack from one another. One aspect provides a capacitor case including a portion having opposing interior and exterior surfaces, with the portion having a hole; and a semi-permeable membrane adjacent the hole to regulate passage of fluids through the hole.
Abstract:
A filtering capacitor feedthrough assembly for an implantable active medical device is disclosed. The filtering capacitor feedthrough assembly includes a capacitor having an aperture, the capacitor is electrically grounded to an electrically conductive feedthrough ferrule or housing of the implantable active medical device. A terminal pin extends into the aperture and an electrically conductive continuous coil is disposed within the aperture and between the terminal pin and the capacitor. The electrically conductive continuous coil mechanically secures and electrically couples the terminal pin to the capacitor.
Abstract:
Systems, architectures, and data structures are described which are used to manage distributed design chains, specifically for domains in which data reside in multiple applications and are linked through complex interrelationships. The design chains or design networks integrated by the invention may include multiple companies in multiple sites collaborating to design and develop a new product. The invention is intended to integrate seamlessly and transparently with existing, diverse legacy applications, which include inter-linked data relevant to the design, thereby addressing the needs identified above.
Abstract:
A determination of an equivalent series resistance (ESR) effect for high frequency filtering performance of a filtered feed-through assembly is described. A low frequency signal is introduced to a filtered feed-through assembly. ESR limit of the filtered feed-through is determined based on the low frequency signal.
Abstract:
A filtering capacitor feedthrough assembly for an implantable active medical device is disclosed. The filtering capacitor feedthrough assembly includes a capacitor having an aperture, the capacitor is electrically grounded to an electrically conductive feedthrough ferrule or housing of the implantable active medical device. A terminal pin extends into the aperture and an electrically conductive continuous coil is disposed within the aperture and between the terminal pin and the capacitor. The electrically conductive continuous coil mechanically secures and electrically couples the terminal pin to the capacitor.
Abstract:
A filtering capacitor feedthrough assembly for an implantable active medical device is disclosed. The filtering capacitor feedthrough assembly includes a capacitor having an aperture, the capacitor is electrically grounded to an electrically conductive feedthrough ferrule or housing of the implantable active medical device. A terminal pin extends into the aperture and an electrically conductive continuous coil is disposed within the aperture and between the terminal pin and the capacitor. The electrically conductive continuous coil mechanically secures and electrically couples the terminal pin to the capacitor.
Abstract:
Systems, architectures, and data structures are described which are used to manage distributed design chains, specifically for domains in which data reside in multiple applications and are linked through complex interrelationships. The design chains or design networks integrated by the invention may include multiple companies in multiple sites collaborating to design and develop a new product. The invention is intended to integrate seamlessly and transparently with existing, diverse legacy applications, which include inter-linked data relevant to the design, thereby addressing the needs identified above.
Abstract:
A method of joining a connection member to a capacitor foil using a staking tool having a tip of less than 0.030″ (0.762 mm) in diameter. Another embodiment couples multiple connection members of a capacitor together by edge-connecting each connection member to its substantially flush neighboring connection members. In one aspect, a capacitor includes a multi-anode stack connected at a first weld by a weld joint less than 0.060″ (1.524 mm) in diameter and a tab attached to one of the anodes of the multi-anode stack at a second weld. In one aspect, an exemplary method joining one or more foils using a staking tool having a tip of less than approximately 0.060″ (1.524 mm) in diameter. In another aspect, a capacitor including a capacitor case having an electrolyte therein and a high formation voltage anode foil having a porous structure and located within the capacitor case.
Abstract:
A method for coupling a capacitor to a feedthrough assembly that includes a ferrule and a terminal pin therethrough is provided. The method comprises dispensing an epoxy onto an outer surface of the feedthrough assembly. A capacitor, which has an opening therethrough for receiving the terminal pin and cooperates therewith to form a cavity, is placed over the ferrule to contact the epoxy. A weight is placed on the capacitor to position it with respect to the terminal pin, and the epoxy is cured.
Abstract:
One aspect provides a capacitor feedthrough assembly having an electrically conductive member dimensioned to extend at least partially through a feedthrough hole of a case of the capacitor, the conductive member having a passage therethrough.