Abstract:
Injectable insulin formulations that are capable of modifying the amount of insulin released based on the patient's tissue glucose levels, methods for making and using these formulations are described herein. The formulation may be administered via subcutaneous, intradermal or intramuscular administration. In one preferred embodiment, the formulations are administered via subcutaneous injection. The formulations contain insulin, an oxidizing agent or enzyme and a reducing agent or enzyme, a diluent and optionally one or more thickening agents. If a thickening agent is present in the formulation, the thickening agent increases the viscosity of the formulation following administration. Preferably the formulation contains an insulin, a diluent, glucose oxidase and peroxidase. Following administration to a patient, the insulin is released from the formulations as a function of the patient's tissue glucose level, which in turn maintains the patient's blood glucose level within an optimum range. The formulation is often referred to as a “smart” formulation since it modifies its release rate of insulin according to the patient's needs at a particular time. In a preferred embodiment, the formulation is designed to release insulin into the systemic circulation over time with a basal release profile following injection in a patient. In another embodiment, the formulation is designed to release insulin into the systemic circulation over time with a non-basal release profile following injection in a patient, such as a regular human insulin release profile or a prandial release profile.
Abstract:
A dry powder inhaler having improved aerodynamic properties for diluting, dispersing, and metering drug particles for increasing the efficiency of pulmonary drug delivery to a patient is described. The inhaler comprises, in general, a housing having an air intake, an air flow-control/check-valve, a mixing section and a mouthpiece. A cartridge loaded with a single dose of medicament can be installed in the mixing section.
Abstract:
A combined rapid acting-long acting insulin formulation has been developed wherein the pH of the rapid acting insulin is adjusted so that the long acting glargine remains soluble when they are mixed together. In the preferred embodiment, this injectable basal bolus insulin is administered before breakfast, provides adequate bolus insulin levels to cover the meal, does not produce hypoglycemia after the meal and provides adequate basal insulin for 24 hours. Lunch and dinner can be covered by two bolus injections of a fast acting, or a rapid acting or a very rapid acting insulin. As a result, a patient using intensive insulin therapy should only inject three, rather than four, times a day. Experiments have been performed to demonstrate, the importance of the addition of specific acids to hexameric insulin to enhance speed and amount of absorption and preserve bioactivity following dissociation into the monomeric form by addition of a chelator such as EDTA. As shown by the examples, the preferred acids are aspartic, maleic, succinic, glutamic and citric acid. These are added in addition to a chelator, preferably ethylenediaminetetraacetic acid (EDTA). The results show that the citric acid formulation was more effective at dropping the blood glucose rapidly than the identical rapid acting formulation prepared with HCl in swine. Charge masking by the polyacid appears to be responsible for rapid insulin absorption. EDTA was not effective when used with adipic acid, oxalic acid or HCl at hastening the absorption of insulin. These results confirm the results seen in clinical subjects and patients with diabetes treated with the rapid acting insulin in combination with citric acid and EDTA.
Abstract:
Injectable insulin formulations with improved stability and rapid onset of action are described herein. The formulations may be for subcutaneous, intradermal or intramuscular administration. In the preferred embodiment, the formulations are administered via subcutaneous injection. The formulations contain insulin in combination with a chelator and dissolution agent, and optionally additional excipients. In the preferred embodiment, the formulation contains human insulin, a zinc chelator such as EDTA and a dissolution agent such as citric acid or sodium citrate. These formulations are rapidly absorbed into the blood stream when administered by subcutaneous injection. In the preferred embodiment, the insulin is provided as a clear liquid, neutral pH, in a multi-use sterile vial. In an alternative embodiment, the insulin is provided as a powder in a sterile vial. This is mixed with a diluent containing a pharmaceutically acceptable carrier, such as water, a zinc chelator such as EDTA and a dissolution agent such as citric acid shortly before or at the time of administration. In another embodiment, the insulin is stored as a frozen mixture, ready for use upon thawing.
Abstract:
Compositions and methods for modulating the pharmacokinetics and pharmacodynamics of rapid acting injectable insulin formulations are described herein. In the preferred embodiment, the formulations are administered via subcutaneous injection. The formulations contain insulin in combination with a zinc chelator such as ethylenediaminetetraacetic acid (“EDTA”) and a dissolution/stabilization agent, and optionally additional excipients. Calcium disodium EDTA is less likely to remove calcium from the body, and typically has less pain on injection in the subcutaneous tissue. Modulating the type and quantity of EDTA can change the insulin absorption profile. Increasing the quantity of citrate can further enhance absorption and chemically stabilize the formulation. In the preferred embodiment, the formulation contains human insulin, calcium disodium EDTA and a dissolution/stabilization agent such as citric acid or sodium citrate. These formulations are rapidly absorbed into the blood stream when administered by subcutaneous injection.
Abstract:
A dry powder inhaler having improved aerodynamic properties for diluting, dispersing, and metering drug particles for increasing the efficiency of pulmonary drug delivery to a patient is described. The inhaler comprises, in general, a housing having an air intake, an air flow-control/check-valve, a mixing section and a mouthpiece. A cartridge loaded with a single dose of medicament can be installed in the mixing section.
Abstract:
A basal insulin formulation composed of insulin, preferably insulin glargine, injectable zinc and injectable iron compounds as precipitating and/or stabilizing agents has been developed for subcutaneous, intradermal or intramuscular administration. The formulation is designed to form a precipitate of insulin following injection, creating a slow releasing “basal insulin” over a period of 12 to 24 hours.
Abstract:
A formulation composed of a sugar such as glucose and a surfactant such as myristoyl lysophosphocholine (LMPC) has been designed to stabilize both hydrophilic and hydrophobic portions of the glucagon molecule, under prolonged physiological conditions, in a formulation that is sufficiently similar to the pH and osmolarity of plasma so as not to induce or to minimize site irritation. The combination of a simple sugar and an surfactant stabilizes the glucagon molecule in an aqueous solution for seven days at 37° C.
Abstract:
A combined rapid acting-long acting insulin formulation has been developed in which the pH of the rapid acting insulin is decreased so that the long acting glargine remains soluble when they are mixed together. In the preferred embodiment, this injectable basal bolus insulin is administered before breakfast, provides adequate bolus insulin levels to cover the meal, does not produce hypoglycemia after the meal and provides adequate basal insulin for 24 hours. Lunch and dinner can be covered by two bolus injections of a fast acting, or a rapid acting or a very rapid acting insulin. As a result, a patient using intensive insulin therapy should only inject three, rather than four, times a day.
Abstract:
A dry powder inhaler having improved aerodynamic properties for diluting, dispersing, and metering drug particles for increasing the efficiency of pulmonary drug delivery to a patient is described. The inhaler comprises, in general, a housing having an air intake, an air flow-control/check-valve, a mixing section and a mouthpiece. A cartridge loaded with a single dose of medicament can be installed in the mixing section.