Abstract:
An organic electroluminescent display (OELD) device includes: first and second substrates facing each other; a plurality of gate lines, a plurality of data lines and a plurality of power lines on the first substrate, the gate and data lines crossing each other to define a plurality of pixel regions; a switching element and a driving element connected to each other in each pixel region; a first electrode connected to the driving element; an organic luminescent layer on the first electrode, the organic luminescent layer including a buffer layer as an uppermost layer; and a second electrode of a transparent conductive material on the organic luminescent layer.
Abstract:
A triazine-based compound having three biphenyl groups, represented by Structure 1, below, wherein R1 through R18 are each independently one of: hydrogen, a substituted C1-30 alkyl group, an unsubstituted C1-30 alkyl group, a substituted C6-50 aryl group, an unsubstituted C6-50 aryl group, a substituted C4-50 heteroaryl group, and an unsubstituted C4-50 heteroaryl group, and at least one of R1, R2, R7, R8, R13 and R14 is one of: a substituted C1-30 alkyl group, an unsubstituted C1-30 alkyl group, a substituted C6-50 aryl group, an unsubstituted C6-50 aryl group, a substituted C4-50 heteroaryl group, and an unsubstituted C4-50 heteroaryl group.
Abstract:
A thin film transistor includes: a gate electrode; source and drain electrodes insulated from the gate electrode; an organic semiconductor layer that is insulated from the gate electrode and is electrically connected to the source and drain electrodes; an insulating layer that insulates the gate electrode from the source and drain electrodes or the organic semiconductor layer; and an ohmic contact layer that is interposed between the source/drain electrodes and the organic semiconductor and contains a compound having a hole transporting unit. By providing the ohmic contact layer, the ohmic contact between source/drain electrodes and the organic semiconductor layer can be effectively achieved and the adhesive force between the source/drain electrodes and the organic semiconductor layer is increased. In addition, a flat panel display having improved reliability can be obtained using the thin film transistor.
Abstract:
An Ir compound can be a blue phosphorescent material. An organic electroluminescent device can use such a material. An organic layer, such as a light emitting layer, can be composed of the Ir compound. An organic electroluminescent device including such an organic layer may exhibit high color purity and emits dark blue light. Such an organic electroluminescent device may have low consumption power.
Abstract:
A phenylcarbazole compound of formula (1) below is provided, where each of R1 and R2 is independently a monosubstituted or polysubstituted functional group selected from the group consisting of hydrogen atom, a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C4-C30 heterocyclic group, a substituted or unsubstituted C6-C30 condensed polycyclic group, wherein groups adjacent to R1 and R2 bind and form a saturated or unsaturated cyclic hydrocarbon group, and Ar is a substituted or unsubstituted C6-C30 aryl group or a C6-C30 heteroaryl group, wherein the substituent R4 is defined herein. Also included is an organic electroluminescence device comprising the above phenylcarbazole compounds.
Abstract:
A 4,4′-Bis(carbazol-9-yl)-biphenyl (CBP) based silicone compound and an organic electroluminescent device using the CBP based silicon compound have excellent blue light emission characteristics and hole transfer capability. The CBP based silicon compound may be used as a blue light emission material or as a host material for various phosphorescent or fluorescent dopants emitting red, green, blue, or white light. Therefore, the organic electroluminescent device using the CBP based silicon compound has excellent characteristics such as a high efficiency, a high luminance, a long life span, and a low power consumption.
Abstract:
The present invention is related to an imidazole ring-containing compound and an organic electroluminescence (EL) display device using the same. In particular, the imidazole ring-containing compound may be used alone or in combination with a dopant as a material for organic films such as an electroluminescent layer. The organic EL display device using an organic film made of the imidazole ring-containing compound has improved characteristics such as luminance, efficiency, driving voltage, and color purity.
Abstract:
An organic electroluminescent display (OELD) device includes: first and second substrates facing each other; a plurality of gate lines, a plurality of data lines and a plurality of power lines on the first substrate, the gate and data lines crossing each other to define a plurality of pixel regions; a switching element and a driving element connected to each other in each pixel region; a first electrode connected to the driving element; an organic luminescent layer on the first electrode, the organic luminescent layer including a buffer layer as an uppermost layer; and a second electrode of a transparent conductive material on the organic luminescent layer.
Abstract:
An organic electroluminescent display (OELD) device includes first substrate; a plurality of gate lines and a plurality of data lines crossing each other to define a plurality of pixel regions; a power line parallel to and separated from the gate lines; switching and driving elements connected to each other in each of the plurality of pixel regions on the first substrate; a first electrode on the first substrate and connected to one of the driving element; an injection layer on the first electrode; an organic luminescent layer on the injection layer; a second electrode of a transparent conductive material on the organic luminescent layer; and a second substrate attached to and facing the first substrate.
Abstract:
A phenylcarbazole compound of formula (1) below is provided, where each of R1 and R2 is independently a monosubstituted or polysubstituted functional group selected from the group consisting of hydrogen atom, a substituted or unsubstituted C1-C30 alkyl group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C4-C30 heterocyclic group, a substituted or unsubstituted C6-C30 condensed polycyclic group, wherein groups adjacent to R1 and R2 bind and form a saturated or unsaturated cyclic hydrocarbon group, and Ar is a substituted or unsubstituted C6-C30 aryl group or a C6-C30 heteroaryl group, wherein the substituent R4 is defined herein. Also included is an organic electroluminescence device comprising the above phenylcarbazole compounds.