Abstract:
The invention comprises a system for attenuating noise in seismic signals detected in a marine seismic streamer. In a particular implementation the system may comprise seismic detectors positioned in the streamer and interconnected to form a plurality of wavenumber filters, with each of the wavenumber filters attenuating signals within a range of wavenumbers. The output signals from the wavenumber filters are operatively connected to a plurality of band-pass filters, and the output signals of the band-pass filters are combined by summation means. The range of wavenumbers attenuated by the wavenumber filters and the passbands of the band-pass filters are selected so that in the output signal of the summation means, signals within a selected frequency range of interest propagating along the cable within a selected velocity range are attenuated and signals within the selected frequency range of interest having a velocity range outside the selected velocity range are preserved.
Abstract:
A disclosed seismic source assembly includes a body having a cavity and a seismic source positioned in the cavity. The cavity is in fluid communication with the water via an aperture oriented in a first direction. One or more surfaces of the body define a water contact significantly larger than an area of the aperture and on a side opposite the first direction. A described method includes forming a source assembly by: providing a cavity having an aperture for transmitting seismic waves; rigidly attaching a base to a side of the cavity opposite the aperture, where a transverse area of the base is significantly larger than an area of the aperture; and positioning a seismic source in the cavity. The source assembly is submerged in the water and triggered.
Abstract:
Recorded seismic data are represented as a convolution of operators representing a reflectivity series of the earth and a seismic wavelet. The recorded seismic wavelet is represented as a convolution of operators representing a receiver ghost, a source ghost, a ghost-free source system response, an earth filter response, and a receiver system response. The operator representing the receiver ghost is removed from the convolution representing the seismic wavelet. The operator representing the source ghost is removed from the convolution representing the seismic wavelet. The operator representing the ghost-free source response is removed from the convolution representing the seismic wavelet. The operator representing the earth filter response is removed from the convolution representing the seismic wavelet. The operator representing the seismic wavelet is removed from the convolution representing the recorded seismic data.
Abstract:
Seismic data are acquired by actuating a first source at a first time and one or more additional seismic sources each with their own characteristic times with respect to a time of signal recording, the sources substantially collocated and at different depths. A first wavefield is determined that would occur if the first source were actuated at a selected time with respect to an initiation time of the recordings and being time adjusted for the water depth. One or more additional wavefields are determined that would occur if the one or more additional sources were each actuated at said selected time with respect to said initiation time, and being time adjusted for water depths of the one or more additional sources. The first wavefield and the one or more additional wavefields are combined to determine a deghosted source wavefield corresponding to actuation of a single seismic energy source.
Abstract:
Three-axis velocity data, obtained along with pressure data in a marine seismic survey, are rotated to a ray direction. Plane wave decomposition is applied in the ray direction to the rotated velocity data. The pressure data and the velocity data are combined to generate at least one of up-going and down-going wave fields. The at least one of up-going and down-going wave fields are used in a time-space domain to image the earth's subsurface.
Abstract:
In a first embodiment the invention comprises a method for gathering geophysical data, including towing geophysical data gathering equipment behind a survey vessel in a body of water, said equipment including an array of sensor streamers extending behind said vessel, and determining a geodetic location of a streamer steering reference point at a forward end of the sensor streamers and a reference direction. At least one sensor streamer included in said array of sensor streamers is laterally deflected in response to the determined geodetic location of said streamer steering reference point and the determined reference direction.
Abstract:
A seismic streamer includes at least one elongated strength member. The seismic streamer further includes a substantially rigid sensor holder coupled to the strength member and fixed in position relative to the strength member. The streamer includes at least one particle motion sensor coupled to the sensor holder and fixed in position relative to the sensor holder.
Abstract:
A method for determining a fault in a seismic air gun includes comparing a near field seismic signal measured during operation of the air gun to a reference near field signal and determining the existence of a fault in the air gun when a difference between the measured near field signal and the reference near field signal exceeds a selected threshold.
Abstract:
Methods and systems for computing notional source signatures from modeled notional signatures and measured near-field signatures are described. Modeled near-field signatures are calculated from the modeled notional signatures. Low weights are assigned to parts of a source pressure wavefield spectrum where signatures are less reliable and higher weights are assigned to parts of the source pressure wavefield spectrum where signatures are more reliable. The part of the spectrum where both sets of signatures are reliable can be used for quality control and for comparing the measured near-field signatures to modeled near-field signatures. When there are uncertainties in the input parameters to the modeling, the input parameters can be scaled to minimize the differences between measured and modeled near-field signatures. Resultant near-field signatures are computed by a weighted summation of the modeled and measured near-field signatures, and notional source signatures are calculated from the resultant near-field signatures.
Abstract:
Computational methods and systems for deghosting marine seismic streamer data are described. In particular, an exploration-seismology vessel tows a number of streamers that form a data acquisition surface located beneath a free surface. The methods computationally deghost or substantially remove receiver ghost signals from seismic data recorded by steamer receivers. The deghosting methods include low frequency compensation to recover vertical velocity wavefield information that is typically lost due to a low signal-to-noise ratio over a low frequency range independent of the free surface conditions or the shape of the data acquisition surface.