Abstract:
The present invention discloses a fast parity bit generator using 4-bit XOR cells implemented using complement pass-transistor logic. For 2.sup.2n inputs, where n is an arbitrary positive integer, the parity bit is generated in n stages using only ##EQU1## 4-bit XOR cells. For 2.sup.2n+1 inputs, where n is an arbitrary positive integer, the parity bit is generated using ##EQU2## 4-bit XOR cells disposed in n rows and one 2-bit XOR cell disposed in the last row. The speed of operation of the XOR cells is further enhanced by using NMOS transistor logic within the XOR cells.
Abstract:
An adder is described. The adder generates a block generate signal after one domino gate delay. The adder can also generate a carry out signal, generate a first plurality of sum signals in response to the carry out signal, generate a block generate signal, generate a group generate signal, and generate a second plurality of sum signals in response to the carry out signal, block generate signal and group generate signal.
Abstract:
A system and method of multiplying a first matrix and a second matrix is provided, the method comprising compressing the second matrix into a third matrix to process primarily non-zero values. For each row in the first matrix, a row may be loaded into a row lookup unit. For each entry in the third matrix, a row address may be extracted, a row value may be obtained from a corresponding loaded row of the first matrix based on the extracted row address, the row value from the loaded row may be multiplied with the matrix value from the third matrix for each column, and the multiplied value may be added to an accumulator corresponding to the each column. Lastly, a multiplied matrix may be output for the loaded row.
Abstract:
A complementary metal oxide semiconductor (CMOS) low-power, high speed logic circuit consisting of a cascaded chain of stages. The first stage is a pulsed domino logic circuit having one or more logic signal inputs for receiving data signals, and a timing input for receiving a clocking pulse that conditions the input pulse domino stage for evaluation during a brief window of time. The output of the pulsed domino circuit is connected to a chain of series-connected skewed static logic gates, each having the channel sizes of its pull-up and pull-down transistors ratioed to a produce, from gate-to-gate in the static logic chain, alternating fast high-to-low and low-to-high transitions for the information carrying leading edge of said input data signals. The use of a pulsed domino first stage driving a chain of skewed logic static gates reduces power consumption but retains the speed of conventional domino logic circuits.
Abstract:
A method and apparatus to increase the performance of a floating point multiplier accumulator (FMAC). The method comprises receiving three floating point numbers and computing a product of the first floating point number and the second floating point number and adding a third floating point number to produce a sum value and a carry value. A propagate value, a kill value and a generate value are then computed based on the sum value and the carry value. Simultaneously the sum value is added to the carry value to create a first result, the sum value is added to the carry value and incremented by one to create a second result, the sum value is added to the carry value and incremented by two to create a third result, and a decimal point position is determined. One of the first result, the second result and the third result is then selected responsive to a rounding mode and the decimal point position. The selected result is normalized based on the decimal point position. The apparatus comprises a multiplier with a propagate, kill, generate generator (PKG generator) coupled to it. An adder, a plus-oner, a plus-two-er and a leading zero anticipator (LZA) are each coupled to the PKG generator in parallel. A rounding control unit is coupled to the LZA and coupled to a multiplexor that outputs a result from one of the adder, the plus-oner, and the plus-two-er responsive to the rounding control unit. A normalization shifter is coupled to the multiplexor and the LZA.
Abstract:
A memory includes a plurality of banks of memory elements. For a memory read access operation, bank enable logic coupled to each of the plurality of banks is responsive to an address of a memory element to be read to selectively deactivate a first precharge clock signal to be received by a first one of the banks that includes the memory element to be read. The bank enable logic is further responsive to the address to selectively maintain in an active state a second precharge clock signal to be received by a second one of the banks that does not include the memory element to be read.
Abstract:
In one embodiment, an adder is sectioned into a plurality of operational blocks; namely, a first block, second block, and third block. The first block in a first section generates sum bits and a section carry signal. The second block in the second section generates a second plurality of sum bits and a first block carry signal. A third block in the second section receives both the section carry signal and the first block carry signal. The third block includes a carry processor which receives the section carry signal and outputs a second block carry signal corresponding to the third block.
Abstract:
A method for verifying proper communication between a first circuit and a second circuit of an electronic device. First it is determined which global clocks the first circuit and the second circuit are timed by. Then, the clock signal is shifted between the first and second storage circuits by an amount equal to or greater than a global clock skew budget of the device if it is determined that the first and second storage circuits are timed by different global clocks. Finally, verifying proper operation of the second circuit against a local clock skew budget of the device is done.
Abstract:
A logic circuit is described. The logic circuit generates a first signal state in response to a first set of input signals, generates a second signal state in response to a second set of input signals, activates a bypass switch in response to the first signal state, and bypasses a domino logic unit in response to the first signal state.
Abstract:
An metal-oxide-semiconductor (MOS) partitioned carry lookahead adder fabricated from a plurality of four bit slice blocks. Each block provides four sum signals and provides a block carry signal. The blocks are organized into groups of optimum size with logic in each group to generate a group propagate signals. Each block has a block carry line with a single transistor connected between the input and output terminals of the block. The blocks employ an intermediate carry circuit for computing sums in place of full adders. In addition, there is a main carry line with transistors controlled by the group propagate signals. For a 32 bit adder, the maximum pass gate delay in the carry chain is three pass gates.