Abstract:
Phase detection between service nodes in a as “PRIME” (“PoweRline Intelligent Metering Evolution”) communications network, in which the service nodes are connected to one phase of a three-phase power distribution network. A service node joining a sub-network receives packet data units from other service nodes in the sub-network, including those that can potentially serve as a switch node to which the joining service node can register. The joining service node measures an elapsed time between a zero crossing of the AC power waveform at its phase and the start of a frame in the received packet data units. This elapsed time is compared with a similar zero crossing gap communicated by other service nodes in the packet data units, to identify the relative phases to which the two service nodes are connected.
Abstract:
Visual codes are scanned to assist navigation. The visual code may be a Quick Response (QR) code that contains information useful to calibrating a variety of navigation-based sensors such as gyroscopes, e-compasses, and barometric pressure sensors.
Abstract:
A method of powerline communications between a plurality of nodes on a powerline communications (PLC) channel including a first node and a second node. At least one communication quality measure is determined for the PLC channel. Based on the communication quality measure, a preamble of a data frame is dynamically switched between a reference preamble having a reference symbol length including a reference number of syncP symbols and a reference number of syncM symbols and at least a first extended preamble having an extended symbol length that is greater than (>) the reference symbol length. The data frame is then transmitted on the PLC channel.
Abstract:
A method and system for reduced feedback transmit beamforming computes a matrix of channel transfer function coefficients. The matrix of channel transfer function coefficients is compressed by applying a rotation matrix having orthogonal columns to the matrix of channel transfer function coefficients to produce a compressed transfer function matrix having a reduced number of non-zero coefficients. The compressed matrix is fed back to a transmitting unit. Decompression of the transfer function coefficient matrix is not required. This compression does not cause any performance degradation for transmit beamforming. The transmitting unit computes a set of beamsteering coefficients from the compressed matrix and applies the coefficients to signals prior to transmission. The beamformed signals are transmitted to the receiving unit and post-coded to allow the receiving unit to see an effective diagonalized channel.
Abstract:
A personal navigation device configured to determine heading readings continuously using data from a sensor in the personal navigation device. Heading readings are selected corresponding to a periodic event. A representative heading is determined from the selected heading readings. When a portion of the selected heading readings has a value within a range of the representative heading, a static heading indicator is asserted to indicate the personal navigation device is moving in a static heading. The static heading indicator may be used to smooth an estimated trajectory of the personal navigation device.
Abstract:
Embodiments of the invention provide a system and method to improve the performance of a GNSS receiver using antenna switching. The system has a plurality of antennas and at least one radio frequency RF chain. There are fewer RF chain(s) than antennas. A receiver processes a plurality of signals sent by a plurality of transmitters. The system also includes antenna switches and switch controller. The method includes processing signals from a plurality of satellite vehicles SVs using an antenna selected from a plurality of antennas.
Abstract:
Embodiments provide a system and method for reconstructing steering matrices in a MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) system by interpolating steering matrices in transmit beamforming. The reconstructed steering matrices provide a faithful representation to the actual steering matrices. Embodiments receive channel information for a subset of sub-carriers of a channel, interpolate the channel information for the subset of sub-carriers to obtain at least one Givens rotation angle for remaining sub-carriers of the channel which are not members of the subset, and reconstruct missing steering matrices from the interpolated angles.
Abstract:
A method of powerline communications (PLC) includes compiling a data frame for physical layer (PHY) by a first communications device at a first communications node on a powerline of a PLC network. The data frame includes a single tone PHY header portion and a data payload portion in a set of tones including at least one tone having a frequency different from a frequency of the single tone. The PHY header portion includes tone mask identification information identifying the set of tones. The first communications device transmits the data frame over the powerline to a second communications device at a second communications node on the powerline. The second communications device receives the data frame, and decodes the data payload using the tone mask identification information in the PHY header portion.
Abstract:
A method of powerline communications between a plurality of nodes on a powerline communications (PLC) channel including a first node and a second node. At least one communication quality measure is determined for the PLC channel. Based on the communication quality measure, a preamble of a data frame is dynamically switched between a reference preamble having a reference symbol length including a reference number of syncP symbols and a reference number of syncM symbols and at least a first extended preamble having an extended symbol length that is greater than (>) the reference symbol length. The data frame is then transmitted on the PLC channel.
Abstract:
In one embodiment, a transmitter includes a binary sequence generator unit configured to provide a sequence of reference signal bits, wherein the sequence is an inseparable function of a cell identification parameter, a cyclic prefix mode corresponding to the transmitter and one or more time indices of the sequence. The transmitter also include a mapping unit that transforms the sequence of reference signal bits into a complex reference signal, and a transmit unit configured to transmit the complex reference signal. In another embodiment, a receiver includes a receive unit configured to receive a complex reference signal and a reference signal decoder unit configured to detect a sequence of reference signal bits from the complex reference signal, wherein the sequence is an inseparable function of a cell identification parameter, a cyclic prefix mode corresponding to a transmitter and one or more time indices of the sequence.