Abstract:
A cyanate ester system is disclosed. An aryl ether oligomer may be made from a dihydroxyaromatic compound and a dihaloaromatic compound in the presence of a base. The oligomer is then reacted with a cyanide compound in the presence of a base to form the cyanate ester shown below. The cyanate ester may then be cross-linked to a thermoset having triazine ring cross-links. HO—Ar2O—Ar1—O—Ar2nOH
Abstract:
A process of making metal nanoparticles comprising the steps of: providing a precursor composition comprising at least one metallic compound and at least one organic compound; wherein the organic compound is selected from the group consisting of an ethynyl compound, a metal-ethynyl complex, and combinations thereof; wherein the precursor composition is a liquid or solid at room temperature; and heating the precursor composition under conditions effective to produce metal nanoparticles. A metal nanoparticle composition comprising metal nanoparticles dispersed homogenously in a matrix selected from the group consisting of ethynyl polymer, crosslinked ethynyl polymer, amorphous carbon, carbon nanotubes, carbon nanoparticles, graphite, and combinations thereof.
Abstract:
A polymer has a repeating unit including at least one alkynyl group, at least one borate group, at least one silyl group and/or at least one siloxyl group. The polymer may be prepared by reacting a first compound having at least one alkynyl group and at least one siloxyl group and a second compound selected from boric acid, hydrocarbon borate, hydrocarbon boronic acid, and pyroboric acid. The polymer of the present invention possesses both the processability of an organic polymer and the thermal and oxidative stability of an inorganic polymer.
Abstract:
An oxidation resistant fiber-reinforced composite is made by impregnating a fibrous material with a resin containing a linear polymer having a repeating unit with at least one carboranyl group, at least one silyl or siloxyl group and at least one acetylenic group. The linear polymer may then be cured to form a fiber-reinforced thermoset or may be pyrolyzed to form a fiber-reinforced ceramic. For additional protection of the fibrous material against oxidation, the fibrous material may be prewetted or coated, also with a linear polymer containing a linear polymer having a repeating unit with at least one carboranyl group, at least one silyl or siloxyl group and at least one acetylenic group, prior to being impregnated. The coating on the fibrous material may be cured to form a thermoset coating on the fibers or may be pyrolyzed to form a ceramic coating on the fibers.
Abstract:
Metal foams are impregnated with a phthalonitrile prepolymer. The metal f/polymer composite formed upon curing has excellent acoustic damping, structural properties, oxidative stability, and flame resistance. Foams of various metals, such as aluminum, titanium, nickel, copper, iron, zinc, lead, silver, gold, platinum, tantalum, and alloys based on these metals may be used.
Abstract:
This invention relates to a new class of novel linear inorganic-organic hybrid polymers of varying molecular weight that are useful for making high temperature, oxidatively stable thermosets, and these novel linear polymers are in themselves oxidatively stable at high temperatures between 600.degree.-1000.degree. C. These new materials have repeat units that contain at least one alkynyl group and at least one siloxanyl group within the backbone of these novel linear polymers. These novel linear polymers can be further polymerized to form thermosets and ceramics.
Abstract:
Dithioether-linked phthalonitrile monomer are prepared by a substitution reaction between 4-nitrophthalonitrile and a dimercaptan and are polymerized to a high-temperature, oxidation-resistant polymer by heating them at a temperature above their melting point. The rate of polymerization is increased by the addition of an amine. Electrical conductivity of the polymer can be increased to the conductor range by heating the polymer above about 400.degree. C.
Abstract:
Iodophthalonitrile is prepared by mixing aminophthalonitrile with sulfuric acid at a temperature below 25.degree. C., reacting that product with sodium nitrite at a temperature below 15.degree. C., and reacting that product with potassium iodide at a temperature below 20.degree. C. A fluoroalkyl phthalonitrile is prepared by mixing fluoroalkyl iodide, activated copper, iodophthalonitrile, and a solvent under an inert atmosphere at a temperature from 110.degree. C. to 125.degree. C. at least until the solution turns green. Both compounds are useful in synthesizing phthalocyanines and polyphthalocyanines.
Abstract:
An improved method of synthesizing bisorthodinitriles having the formula: ##STR1## where R is an aliphatic or aromatic radical, which involves dissolving theeactants in a dipolar aprotic solvent such as dimethylformamide, and heating the mixture to reflux until the completion of the reaction. The usage of such solvents permits the reaction to be completed at least ten times as fast as the prior-art method, while the volume of solvent used is also reduced by a factor of ten.
Abstract:
A bisorthodinitrile of the formula: ##STR1## wherein R' and R" are perfluorinated alkyls having from 1 to 4 carbon at, and the phenyl groups are attached at the para position. A polyphthalocyanine resin is prepared by heating one or more of these bisorthodinitriles at a temperature from about 260.degree. C. to about 295.degree. C. These resins are particularly useful in high-temperature structural composites used in high-temperature, moist or corrosive environments.