Abstract:
A solid catalyst component for polymerization of an olefin having a polymerization activity equivalent to or higher than a solid catalyst component having a phthalic acid ester compound or diether compound as an internal electron-donating compound, and can produce an olefin polymer having excellent bulk density and low content of olefin oligomers. A solid catalyst component for polymerization of an olefin is obtained by: (i) bringing compounds selected from particular phthalic acid ester compounds (A), a magnesium compound and a halogen-containing titanium compound into contact; (ii) bringing the first contact product obtained in step (i) and compounds selected from particular diether compounds (B) into contact, and washing the second contact product; and (iii) obtaining a contact product between the washed second contact product and a halogen-containing titanium compound, washing the contact product, and bringing it into contact with particular phthalic acid ester compounds (A) and a halogen-containing titanium compound.
Abstract:
Provided is sponge titanium produced by the Kroll method, in which the total of a chlorine content and a magnesium content is 350 ppm by mass or lower, and a filling density is 1.65 g/cm3 to 1.95 g/cm3. The present invention can provide sponge titanium for large ingot production that is difficult to cause problems due to chloride inclusion at the time of melting production of the large ingot by a melting method not associated with compression molding and has easy component control and also provide a method for industrially efficiently producing the sponge titanium.
Abstract:
There is provided a novel alkoxymagnesium which, when used as a constituent of a solid catalyst component for olefin polymerization to polymerize an olefin, may reduce the formation rate of a fine powder and may form a polymer having an excellent particle size distribution under high polymerization activity. The alkoxymagnesium is characterized by comprising secondary particles each of which is an aggregate of primary particles having an average particle diameter of less than 1 μm and by having a ratio represented by the average particle diameter of the primary particles/the average particle diameter of the secondary particles of 0.1 or less, a total pore volume of 0.5 to 1 cm3/g, a specific surface area of less than 50 m2/g, and a particle size distribution index (SPAN) 1 or less.
Abstract:
A method for producing a solid catalyst component includes bringing a magnesium compound, a titanium halide compound, and one or more internal electron donor compounds into contact with each other to effect a reaction; washing the resulting product with a first inert organic wash solvent that does not have reactivity with the titanium halide compound, and has a solubility parameter (SP) of 8.0 to 9.0; washing the resulting intermediate product in the absence of the titanium halide compound with a second inert organic wash solvent that includes a hydrocarbon compound and does not have reactivity with the titanium halide compound, but has a solubility parameter (SP) of more than 9.0; and washing the resulting product in the absence of the titanium halide compound with a third inert organic wash solvent that does not have reactivity with the titanium halide compound, and has a solubility parameter (SP) of less than 8.0.
Abstract:
A solid catalyst component for olefin polymerization, an olefin polymerization catalyst, and a method for producing an olefin polymer, are disclosed. A solid catalyst component for olefin polymerization includes magnesium, a halogen, titanium, vanadium, and an internal electron donor compound selected by organic acid diester. An olefin polymerization catalyst includes the disclosed solid catalyst component for olefin polymerization, an organoaluminum promoter, and an optional external electron donor A method for producing an olefin copolymer includes copolymerizing ethylene and propylene using the disclosed olefin polymerization catalyst.
Abstract:
Provided is a method for producing metal by molten salt electrolysis, by which the metal can be efficiently produced.A method for producing metal by using an apparatus for molten salt electrolysis having an electrolytic cell and an electrode pair, wherein the molten salt electrolysis in the electrolytic cell and heating of the molten salt by a Joule heat generation between a pair of electrodes for electrolysis are simultaneously performed; and wherein the apparatus for molten salt electrolysis has at least two sets of electrode pair, and at least one set of the electrode pairs is electrically opened.
Abstract:
A technique is provided, in which impure metal is efficiently separated and removed from titanium-containing raw material such as titanium slag or ilmenite and high titanium-containing raw material is produced. The method for improving quality of titanium-containing raw material containing slag, including steps of: oxidizing the titanium-containing raw material, selectively chlorinating impurities in the titanium-containing raw material, and separating and removing the impure chlorides to obtain high titanium-containing raw material. Alternatively, in this method, the oxidizing treatment and the selective chlorinating treatment are performed simultaneously.
Abstract:
An electron beam melting furnace includes a hearth, a mold, an electron gun for keeping metal as a molten state, an electron beam controller for controlling direction of the electron beam, an image sensor for molten metal, and an operating device. A method for operating the furnace includes a step of inputting electron beam emitting coordinates in the electron beam controller, a step of emitting the electron beam, a step of detecting a high electron beam intensity spot by the image sensor, a step of calculating coordinates of high electron beam intensity based on the detected signal by the operating device, a step of calculating differences between the coordinates of emission and the coordinates of high electron beam intensity spot, a step of inputting the difference in the electron beam controller, and a step of controlling the location of electron beam spot.
Abstract:
A lithium-lanthanum-titanium oxide sintered material has a lithium ion conductivity 3.0×10−4 Scm−1 or more at a measuring temperature of 27° C., the material is described by one of general formulas (1−a)LaxLi2-3xTiO3-aSrTiO3, (1−a)LaxLi2-3xTiO3-aLa0.5K0.5TiO3, LaxLi2-3xTi1-aMaO3-a, Srx-1.5aLaaLi1.5-2xTi0.5Ta0.5O3 (0.55≦x≦0.59, 0≦a≦0.2, M=at least one of Fe or Ga), amount of Al contained is 0.35 mass % or less as Al2O3, amount of Si contained is 0.1 mass % or less as SiO2, and average particle diameter is 18 μm or more.
Abstract:
A method for producing a solid catalyst component for olefin polymerization produces a novel solid catalyst component for olefin polymerization that achieves excellent olefin polymerization activity and activity with respect to hydrogen during polymerization, and can produce an olefin polymer that exhibits a high MFR, high stereoregularity, and excellent rigidity. The method includes a first step that brings a magnesium compound, a tetravalent titanium halide compound, and one or more first internal electron donor compounds excluding an aromatic dicarboxylic acid diester into contact with each other to effect a reaction, followed by washing; a second step that brings a tetravalent titanium halide compound and one or more second internal electron donor compounds into contact with a product obtained by the first step to effect a reaction, followed by washing; and a third step that brings one or more third internal electron donor compounds into contact with a product obtained by the second step to effect a reaction.