Abstract:
In a method for determining a data value for a target pixel in a destination image based on data values for pixels in a source image, with the destination image being scaled relative to the source image, calculating a position in the source image based on position of a target pixel in the destination image, testing the presence of a diagonal gradient in the source image at the position determined in the calculating step, the testing step testing for the presence of a diagonal gradient by reference to values of pixels in the source image that surround the position calculated in the calculating step, responsive to the presence of a diagonal gradient in the testing step, calculating a data value for the target pixel based on interpolation of data values for diagonally-adjacent pixels in the source image, and responsive to the absence of a diagonal gradient in the testing step, calculating a data value for the target pixel based on interpolation of data values for at least all four surrounding pixels in the source image.
Abstract:
An optical metrology system is provided with a data analysis method to determine the elastic moduli of optically transparent dielectric films such as silicon dioxide, other carbon doped oxides over metal or semiconductor substrates. An index of refraction is measured by an ellipsometer and a wavelength of a laser beam is measured using a laser spectrometer. The angle of refraction is determined by directing a light pulse focused onto a wafer surface, measuring a first set of x1, y1, and z1 coordinates, moving the wafer in the z direction, directing the light pulse onto the wafer surface and measuring a second set of x2, y2 and z2 coordinates, using the coordinates to calculate an angle of incidence, calculating an angle of refraction from the calculated angle of incidence, obtaining a sound velocity v, from the calculated angle of refraction and using the determined sound velocity v, to calculate a bulk modulus. Hardware calibration and adjustments for the optical metrology system are also provided in order to minimize the variation of the results from tool to tool down to about 0.5% or below.