Abstract:
An ophthalmic lens system comprises a lens body with a curved outer surface and an assembly including a plurality of spaced apart nanostructures. The assembly covers at least a portion of the curved outer surface.
Abstract:
An intraocular lens device that includes an intraocular lens optics that provides at least two powers of magnification one being near vision power and the other being distance vision power. The lens optics has surface modulations that are responsible for providing the near vision power. The zone structure provides an add power of over 6 diopters. The add power indicative of an extent that the near vision focusing power is greater than the distance vision focusing power.
Abstract:
An ophthalmic lens is disclosed, one embodiment comprising an optic having an anterior surface and a posterior surface disposed about an optical axis, wherein at least one of the surfaces has a profile characterized by superposition of a base profile and an auxiliary profile, the auxiliary profile comprising a continuous pattern of surface deviations from the base profile. The auxiliary profile is a sinusoidal profile and can be amplitude modulated, frequency modulated or both amplitude and frequency modulated. The ophthalmic lens can be an IOL.
Abstract:
In one aspect, the present invention provides a method for correcting vision that employs two lenses, at least one of which is a multifocal lens, with different focusing characteristics for use in the two eyes of the patient. The visual performance of each lens (e.g., visual contrast or acuity) is selected in accordance with a predefined relation so as to optimize the binocular visual performance provided by the combination of the lenses.
Abstract:
In one aspect of the invention, a multifocal ophthalmic lens includes an optic and a plurality of diffractive zones disposes about an optical axis of the optic. At least two of the diffractive zones have different areas so as to cause broadening of optical energy profiles at a near focus and a far focus of the diffractive zones for generating an intermediate focus. A fraction of incident optical energy directed to the intermediate focus is different from a fraction of incident optical energy directed to at least one of the near or far foci.
Abstract:
An aspheric toric intraocular lens (IOL) having toricity and asphericity in a single lens. The toricity and asphericity may be provided on separate surfaces, such as an anterior surface and a posterior surface, or the toricity and asphericity may be combined onto a single surface. The edge thickness may be varied sinusoidal to maintain equal edge thickness at 45 degree meridian.
Abstract:
In one aspect of the invention, a multifocal ophthalmic lens includes an optic and a plurality of diffractive zones disposes about an optical axis of the optic. At least two of the diffractive zones have different areas so as to cause broadening of optical energy profiles at a near focus and a far focus of the diffractive zones for generating an intermediate focus. A fraction of incident optical energy directed to the intermediate focus is different from a fraction of incident optical energy directed to at least one of the near or far foci.
Abstract:
In one aspect, a trifocal ophthalmic lens is disclosed that includes an optic having a surface that comprises at least one trifocal diffractive pattern and at least one bifocal diffractive pattern such that the bifocal pattern provides near and far vision and the trifocal pattern generates near, far, and intermediate vision. For example, the trifocal pattern can provide near, far, and intermediate foci such that the near and far foci are substantially coincident, respectively, with a near and a far focus of the bifocal pattern. In this manner, the trifocal and bifocal patterns collectively provide near, intermediate, and far foci (or focal regions) corresponding, respectively, to the near, intermediate and far vision.
Abstract:
In one aspect, the present invention provide an ophthalmic lens (e.g., an IOL) that includes an optic having an anterior optical surface and a posterior optical surface, where the optic provides an optical power in a range of about 16 D to about 25 D as measured in a medium having an index of refraction substantially similar to that of the eye's aqueous humor (e.g., about 1.336). At least one of the optical surfaces is characterized by an aspherical base profile such that the optic exhibits a negative spherical aberration in a range of about −0.202 microns to about −0.190 microns across the power range.