Abstract:
A method and apparatus for providing, in a processor, a shift operation on a packed data element having multiple values. The apparatus having multiple muxes, each of the multiple muxes having a first input, a second input, a select input and an output. Each of the multiple bits that represent a shifted packed intermediate result on a first bus is coupled to the corresponding first input. Each of the multiple bits representing a replacement bit for one of the multiple values is coupled to a corresponding second input. Each of the multiple bits driven by a correction circuit is coupled to a corresponding select input. Each output corresponds to a bit of a shifted packed result.
Abstract:
An apparatus for performing a shift operation on a packed data element having multiple values. The apparatus having multiple muxes, each of the multiple muxes having a first input, a second input, a select input and an output. Each of the multiple bits that represent a shifted packed intermediate result on a first bus is coupled to the corresponding first input. Each of the multiple bits representing a replacement bit for one of the multiple values is coupled to a corresponding second input. Each of the multiple bits driven by a correction circuit is coupled to a corresponding select input. Each output corresponds to a bit of a shifted packed result.
Abstract:
A novel processor for manipulating packed data. The packed data includes a first data element D1 and a second data element D2. Each of said data elements has a predetermined number of bits. The processor comprises a decoder, a register, and a circuit. The decoder is for decoding a control signal responsive to receiving the control signal. The register is coupled to the decoder. The register is for storing the packed data. The circuit is coupled to the decoder. The circuit is for generating a first result data element R1 and a second data element R2. The circuit is further for generating R1 to represent a total number bits set in D1, and the circuit is further for generating R2 to represent a total number bits set in D2.
Abstract:
A processor. The processor includes a decoder being coupled to receive a control signal. The control signal has a first source address, a second source address, a destination address, and an operation field. The first source address corresponds to a first location. The second source address corresponds to a second location. The destination address corresponds to a third location. The operation field indicates that a type of packed data multiply operation is to be performed. The processor further includes a circuit being coupled to the decoder. The circuit is for multiplying a first packed data being stored at the first location with a second packed data being stored at the second location. The circuit is further for communicating a corresponding result packed data to the third location.
Abstract:
A pipeline instruction processor for executing instructions stored in an instruction memory, including a plurality of branch instructions. The instruction processor includes a branch target buffer which contains target instructions and target addresses corresponding to branch instructions. The target instruction data is indexed according to the address of the instruction which precedes the branch instruction. Also included in the branch target buffer is history data indicating whether the branch was taken. The instruction processor also includes two execution units. The present invention employs logic which allows a branch instruction and its target instruction stored in the branch target buffer to be executed concurrently in the two execution units according to the history data stored in the branch target buffer. Since the branch instructions and their target instructions are executed during the same cycle, branch instructions appear to be executed in zero cycles.
Abstract:
An apparatus includes an instruction decoder, first and second source registers and a circuit coupled to the decoder to receive packed data from the source registers and to unpack the packed data responsive to an unpack instruction received by the decoder. A first packed data element and a third packed data element are received from the first source register. A second packed data element and a fourth packed data element are received from the second source register. The circuit copies the packed data elements into a destination register resulting with the second packed data element adjacent to the first packed data element, the third packed data element adjacent to the second packed data element, and the fourth packed data element adjacent to the third packed data element.
Abstract:
An apparatus includes an instruction decoder, first and second source registers and a circuit coupled to the decoder to receive packed data from the source registers and to unpack the packed data responsive to an unpack instruction received by the decoder. A first packed data element and a third packed data element are received from the first source register. A second packed data element and a fourth packed data element are received from the second source register. The circuit copies the packed data elements into a destination register resulting with the second packed data element adjacent to the first packed data element, the third packed data element adjacent to the second packed data element, and the fourth packed data element adjacent to the third packed data element.
Abstract:
An apparatus includes an instruction decoder, first and second source registers and a circuit coupled to the decoder to receive packed data from the source registers and to unpack the packed data responsive to an unpack instruction received by the decoder. A first packed data element and a third packed data element are received from the first source register. A second packed data element and a fourth packed data element are received from the second source register. The circuit copies the packed data elements into a destination register resulting with the second packed data element adjacent to the first packed data element, the third packed data element adjacent to the second packed data element, and the fourth packed data element adjacent to the third packed data element.
Abstract:
An apparatus includes an instruction decoder, first and second source registers and a circuit coupled to the decoder to receive packed data from the source registers and to unpack the packed data responsive to an unpack instruction received by the decoder. A first packed data element and a third packed data element are received from the first source register. A second packed data element and a fourth packed data element are received from the second source register. The circuit copies the packed data elements into a destination register resulting with the second packed data element adjacent to the first packed data element, the third packed data element adjacent to the second packed data element, and the fourth packed data element adjacent to the third packed data element.
Abstract:
An apparatus includes an instruction decoder, first and second source registers and a circuit coupled to the decoder to receive packed data from the source registers and to unpack the packed data responsive to an unpack instruction received by the decoder. A first packed data element and a third packed data element are received from the first source register. A second packed data element and a fourth packed data element are received from the second source register. The circuit copies the packed data elements into a destination register resulting with the second packed data element adjacent to the first packed data element, the third packed data element adjacent to the second packed data element, and the fourth packed data element adjacent to the third packed data element.