Abstract:
A flat panel display can include a transparent substrate, a light emitting device formed on a surface of the transparent substrate, and a prism sheet formed on the other surface of the transparent substrate and having a plurality of polygonal protruding members having lengthwise axes parallel to one another to direct light output from the light emitting device in a predetermined direction. The sum of the thickness of the transparent substrate and the thickness of a portion of the prism sheet excluding the polygonal protruding members can be about 0.1 to about 0.5 mm.
Abstract:
Provided is a method of manufacturing a ultra-small light-emitting diode (LED) electrode assembly, the method including preparing a base substrate, forming an electrode line including a first electrode and a second electrode on the base substrate, positioning a guide member having a plurality of slit portions therein on the base substrate, and inserting ultra-small LED devices into the plurality of slit portions of the guide member.
Abstract:
Disclosed is a white LED device using a multi-package. The white LED device maximizes the efficiency of a green LED in the yellow gap to minimize a deviation in performance between the other color chips, in comparison with conventional white LED devices using RGB multi-chips. In addition, deviations in temperature, current and droop characteristics between the chips can be minimized, contributing to the simplification of a driving circuit. Therefore, the white LED device is suitable for commercialization. Furthermore, the white LED device has a higher color rendering index (Ra) (>80) than conventional white LED devices having single-package structures. The correlated color temperatures of the white LED device are controllable in the range of 2,700 to 12,000 K. The white LED device can express abundant colors for emotion lighting and can emit white light with high efficiency.
Abstract:
The invention is directed to an organic electroluminescent (EL) display device having an improved light extracting efficiency due to a photonic crystal layer formed proximate one side of a stack. Among other elements, the stack may include a first electrode formed on a substrate, an organic light emitting layer formed above the first electrode, and a second electrode formed above the organic light emitting layer. Additionally, the photonic crystal layer may be configured to correspond to a wavelength of colored light. An organic EL display device having an improved light extracting efficiency may be manufactured using a thermal transfer donor film to adhere the photonic crystal layer to the stack.
Abstract:
An Ir compound can be a blue phosphorescent material. An organic electroluminescent device can use such a material. An organic layer, such as a light emitting layer, can be composed of the Ir compound. An organic electroluminescent device including such an organic layer may exhibit high color purity and emits dark blue light. Such an organic electroluminescent device may have low consumption power.
Abstract:
A flat panel display can include a transparent substrate, a light emitting device formed on a surface of the transparent substrate, and a prism sheet formed on the other surface of the transparent substrate and having a plurality of polygonal protruding members having lengthwise axes parallel to one another to direct light output from the light emitting device in a predetermined direction. The sum of the thickness of the transparent substrate and the thickness of a portion of the prism sheet excluding the polygonal protruding members can be about 0.1 to about 0.5 mm.
Abstract:
The present invention is related to an imidazole ring-containing compound and an organic electroluminescence (EL) display device using the same. In particular, the imidazole ring-containing compound may be used alone or in combination with a dopant as a material for organic films such as an electroluminescent layer. The organic EL display device using an organic film made of the imidazole ring-containing compound has improved characteristics such as luminance, efficiency, driving voltage, and color purity.
Abstract:
An organic electroluminescence (EL) display device assembly includes a substrate, an organic EL portion, an optical loss prevention layer, and a fine space layer. The organic EL portion has a first electrode layer, an organic luminescent layer, and a second electrode layer which are each patterned and stacked on the upper surface of the substrate. The optical loss prevention layer is used to increase light bleeding efficiency. The fine space layer is formed between the optical loss prevention layer and a layer facing the optical loss prevention layer and is filled with a gas or evacuated.
Abstract:
The present invention is related to an imidazole ring-containing compound and an organic electroluminescence (EL) display device using the same. In particular, the imidazole ring-containing compound may be used alone or in combination with a dopant as a material for organic films such as an electroluminescent layer. The organic EL display device using an organic film made of the imidazole ring-containing compound has improved characteristics such as luminance, efficiency, driving voltage, and color purity.
Abstract:
A photolithography method includes applying to a substrate a coating of a film forming composition containing a bonding resin and a film forming material and drying to form a film; selectively coating the film with a photosensitive composition including a photosensitizer to form a film pattern; exposing the film with the film pattern; and developing the film. Therefore, a film in a pattern and having excellent characteristics can be manufactured easily and efficiently. The photolithography method can be applied to any product which requires the formation of a film in a pattern.