摘要:
Disclosed is a white LED device using a multi-package. The white LED device maximizes the efficiency of a green LED in the yellow gap to minimize a deviation in performance between the other color chips, in comparison with conventional white LED devices using RGB multi-chips. In addition, deviations in temperature, current and droop characteristics between the chips can be minimized, contributing to the simplification of a driving circuit. Therefore, the white LED device is suitable for commercialization. Furthermore, the white LED device has a higher color rendering index (Ra) (>80) than conventional white LED devices having single-package structures. The correlated color temperatures of the white LED device are controllable in the range of 2,700 to 12,000 K. The white LED device can express abundant colors for emotion lighting and can emit white light with high efficiency.
摘要:
A phosphor-converted single-color LED is provided. The phosphor-converted single-color LED includes a long-wavelength pass filter having a special construction. The phosphor-converted single-color LED has high color purity and efficiency despite the use of a phosphor in the form of a nano/micro powder.
摘要:
Disclosed is a subminiature LED element and a manufacturing method thereof. The subminiature LED element includes a first conductive semiconductor layer, an active layer formed on the first conductive semiconductor layer, and a semiconductor light emission element of a micrometer or nanometer size including a second conductive semiconductor layer formed on the active layer, wherein the outer circumference of the semiconductor light emission element is coated with an insulation film. The manufacturing method includes 1) forming a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer in order on a substrate, 2) etching the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer so that the LED element has a diameter of a nanometer or micrometer level, and 3) forming an insulation film on the outer circumference of the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer and removing the substrate. Therefore, a subminiature LED element of a nanometer or micrometer size may be effectively produced by combining a top-down manner and a bottom-up manner, and light emission efficiency may be improved by preventing a surface defect of the produced subminiature LED element.
摘要:
Disclosed is a full-color LED display device and a manufacturing method thereof. The full-color LED display device includes 1) a plurality of first electrodes formed on a substrate, 2) at least five subminiature blue LED elements attached to each unit pixel site formed on the first electrode, 3) an insulation layer formed on the substrate and the blue LED element, 4) a plurality of second electrodes formed on the insulation layer, and 5) a green color conversion layer and a red color conversion layer formed on the second electrode corresponding to partial unit pixel sites selected from the unit pixel sites. The manufacturing method of a full-color LED display device includes 1) forming a plurality of first electrodes on a substrate, 2) attaching at least five subminiature blue LED elements to each unit pixel site formed on the first electrode, 3) forming an insulation layer on the substrate, 4) forming a plurality of second electrodes on the insulation layer, and 5) successively patterning a green color conversion layer and a red color conversion layer on the second electrode corresponding to partial unit pixel sites selected from the unit pixel sites.
摘要:
Disclosed is a full-color LED display device and a manufacturing method thereof. The full-color LED display device includes 1) a plurality of first electrodes formed on a substrate, 2) at least five subminiature blue LED elements attached to each unit pixel site formed on the first electrode, 3) an insulation layer formed on the substrate and the blue LED element, 4) a plurality of second electrodes formed on the insulation layer, and 5) a green color conversion layer and a red color conversion layer formed on the second electrode corresponding to partial unit pixel sites selected from the unit pixel sites. The manufacturing method of a full-color LED display device includes 1) forming a plurality of first electrodes on a substrate, 2) attaching at least five subminiature blue LED elements to each unit pixel site formed on the first electrode, 3) forming an insulation layer on the substrate, 4) forming a plurality of second electrodes on the insulation layer, and 5) successively patterning a green color conversion layer and a red color conversion layer on the second electrode corresponding to partial unit pixel sites selected from the unit pixel sites.
摘要:
Disclosed is a subminiature LED element and a manufacturing method thereof. The subminiature LED element includes a first conductive semiconductor layer, an active layer formed on the first conductive semiconductor layer, and a semiconductor light emission element of a micrometer or nanometer size including a second conductive semiconductor layer formed on the active layer, wherein the outer circumference of the semiconductor light emission element is coated with an insulation film. The manufacturing method includes 1) forming a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer in order on a substrate, 2) etching the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer so that the LED element has a diameter of a nanometer or micrometer level, and 3) forming an insulation film on the outer circumference of the first conductive semiconductor layer, the active layer and the second conductive semiconductor layer and removing the substrate. Therefore, a subminiature LED element of a nanometer or micrometer size may be effectively produced by combining a top-down manner and a bottom-up manner, and light emission efficiency may be improved by preventing a surface defect of the produced subminiature LED element.
摘要:
Disclosed is a white LED device using a multi-package. The white LED device maximizes the efficiency of a green LED in the yellow gap to minimize a deviation in performance between the other color chips, in comparison with conventional white LED devices using RGB multi-chips. In addition, deviations in temperature, current and droop characteristics between the chips can be minimized, contributing to the simplification of a driving circuit. Therefore, the white LED device is suitable for commercialization. Furthermore, the white LED device has a higher color rendering index (Ra) (>80) than conventional white LED devices having single-package structures. The correlated color temperatures of the white LED device are controllable in the range of 2,700 to 12,000 K. The white LED device can express abundant colors for emotion lighting and can emit white light with high efficiency.
摘要:
A phosphor-converted single-color LED is provided. The phosphor-converted single-color LED includes a long-wavelength pass filter having a special construction. The phosphor-converted single-color LED has high color purity and efficiency despite the use of a phosphor in the form of a nano/micro powder.