Abstract:
A shift-register circuit. The shift-register circuit has a plurality of shift-register units connected in series. Each of the shift-register units generates first and second pulse signals, wherein the first pulse signal is an output signal of the shift-register circuit and the second pulse signal is a trigger signal of a subsequent shift-register unit. A LCD panel driving circuit using the shift-register circuit is also disclosed.
Abstract:
The display device of the invention arrayed with a plurality of gate lines and data lines and a switch unit and a pixel unit are located in the intersection of scan line and the date line. The device comprises a gate driven unit a data driven unit and a control unit wherein the gate driven unit provides a plurality of gate voltages to the gate lines to drive the switch unit, the data driven unit sends the corresponding video data to the gate lines, and the control unit controls the transmitting sequence of the video data to the data lines. The method of the invention includes the steps of: gate driven unit providing every N scanning signals to the scan lines and then the data driven unit switching the transmitting sequence of the video data.
Abstract:
The present invention relates to a driver system, comprising a counter unit, a buffer unit and a voltage regulation unit. The counter unit is adapted to sequentially activate one of the first output terminals upon receiving a driver signal and then output a control signal according to the driver signal. The buffer unit is adapted to output an isolated control signal upon receiving the control signal from the counter unit. Upon receiving the isolated control signal, the voltage regulation unit outputs a control voltage which corresponds to a given resistor provided therein. The control voltage is useful in driving an electronic device, and the operation of the electronic device may be further adjusted by changing the control voltage from one level to another.
Abstract:
The driver circuit according to the invention includes a receiver module, a counter unit, isolation units and a voltage regulation unit. The receiver module receives an initiation signal and performs filtering using a low-pass filter to convert the initiation signal into a driving signal which is transmitted to the counter unit. Upon receiving the driving signal, the output terminals of the counter unit are sequentially activated to output a control signal. The isolation units may be diodes or transistors adapted to output an isolated control signal. The voltage regulation unit includes a plurality of resistors and is adapted to output a control voltage corresponding to one of the resistors according to the isolated control signal. The control voltage is useful in shifting the operation of an electrical device from one operation state to another.
Abstract:
The present invention relates to a hybrid constant current LED lamp. The LED lamp includes a rectifier unit, a filter circuit, a switching mode power supply, at least one main LED and a subsidiary LED. The main LED is electrically connected in series to the output terminal of the rectifier unit and the input port of the primary-side circuit of the switching mode power supply. The subsidiary LED is connected to the secondary-side circuit. The invention not only provides circuit architecture capable of providing a constant current, but also improves the power efficiency of the lamp.
Abstract:
A constant current LED lamp is provided with a linear driver circuit for driving multiple light emitting diodes (LEDs), or LED packages including multiple LED chips, connected in series. The driver circuit includes a rectifier circuit, a filter circuit, a stable voltage circuit, and a constant current circuit. The driver circuit allows the aggregate forward voltage drop of all the LEDs connected in series to approach the rectified input voltage to efficiently utilize the AC power from the mains.
Abstract:
A constant current LED lamp is provided with a linear driver circuit for driving multiple light emitting diodes (LEDs), or LED packages comprise multiple LED chips, connected in series. The driver circuit includes a rectifier circuit, a stable voltage circuit, and a constant current circuit. The driver circuit allows the aggregate forward voltage drop of all the LEDs connected in series to approach the rectified input voltage to efficiently utilize the AC power from the mains.
Abstract:
The present invention discloses an improved LED structure and comprises: a LED chip; a wire; a packing mask; and a photocatalytic agent. The volume of an LED is smaller so as to be convenient for installation. Compared to a conventional LED with same power, the present invention increases the total contact surface area that contacts air, so that the functions of disinfection, deodorization, and mildewproofing can be effectively achieved.
Abstract:
A double-frame-rate method for reducing the time lapse of a LCD pixel between its two consecutive scans within a frame is provided. The method horizontally partitions the scan lines into (k) non-overlapping regions, each containing m1, m2, . . . , mk scan lines. The method then scans each of the regions twice before continuing to the next region and, as such, completes two passes of scanning of the entire frame. For a pixel in a region (j), the time lapse between the pixel's two consecutive scans during the frame's frame time is (mj/n) of the time lapse of conventional double-frame-rate methods.
Abstract:
A method to drive a display with grid array pixels is comprised of writing image data containing a range of grayscale code into multiple pixels; at least a time of a pixel row being divided into frame time and black picture time; each code in the grayscale range being mapped to that in and adjusted range to drive the display without changing gamma voltage or with increased gamma voltage of the greatest grayscale code to present the luminance desired; pixel response time being shorter than frame time; and black picture data being written into the pixel row during the black picture time.